Application of the Laplace‐domain inversion using irregular finite elements in the complex Foothills environment

2010 ◽  
Author(s):  
Youngseo Kim ◽  
Changsoo Shin ◽  
Henri Calandra
Geophysics ◽  
2013 ◽  
Vol 78 (4) ◽  
pp. R167-R173 ◽  
Author(s):  
Wansoo Ha ◽  
Changsoo Shin

Laplace-domain inversions generate long-wavelength velocity models from synthetic and field data sets, unlike full-waveform inversions in the time or frequency domain. By examining the gradient directions of Laplace-domain inversions, we explain why they result in long-wavelength velocity models. The gradient direction of the inversion is calculated by multiplying the virtual source and the back-propagated wavefield. The virtual source has long-wavelength features because it is the product of the smooth forward-modeled wavefield and the partial derivative of the impedance matrix, which depends on the long-wavelength initial velocity used in the inversion. The back-propagated wavefield exhibits mild variations, except for near the receiver, in spite of the short-wavelength components in the residual. The smooth back-propagated wavefield results from the low-wavenumber pass-filtering effects of Laplace-domain Green’s function, which attenuates the high-wavenumber components of the residuals more rapidly than the low-wavenumber components. Accordingly, the gradient direction and the inversion results are smooth. Examples of inverting field data acquired in the Gulf of Mexico exhibit long-wavelength gradients and confirm the generation of long-wavelength velocity models by Laplace-domain inversion. The inversion of moving-average filtered data without short-wavelength features shows that the Laplace-domain inversion is not greatly affected by the high-wavenumber components in the field data.


2013 ◽  
Vol 32 (9) ◽  
pp. 1094-1099 ◽  
Author(s):  
Changsoo Shin ◽  
Wansoo Ha ◽  
Youngseo Kim

Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. VE119-VE133 ◽  
Author(s):  
Changsoo Shin ◽  
Wansoo Ha

In the frequency domain, gradient-based local-optimization methods of waveform inversions have been unsuccessful at inverting subsurface parameters without an accurate starting model. Such methods could not correct automatically for poor starting models because multiple local minima made it difficult to approach the true global minimum. In this study, we compared the behavior of objective functions in the frequency and Laplace domains. Wavefields in the Laplace domain correspond to the zero-frequency component of a damped wavefield; thus, the Laplace-domain waveform inversion can image smooth velocity models. Objective functions in the Laplace-domain inversion have a smoother surface and fewer local minima than in the frequency-domain inversion. We applied the waveform inversion to a 2D slice of the acoustic SEG/EAGE salt model in the Laplace domain and recovered smooth velocity models from inaccurate initial velocity conditions. We also successfully imaged velocities of the salt, SEG overthrust, and Institut Francais du Petrole Marmousi models with the frequency-domain inversion method by using the inverted velocity model of the Laplace-domain inversion as the initial model.


Geophysics ◽  
2015 ◽  
Vol 80 (1) ◽  
pp. R1-R13 ◽  
Author(s):  
Wansoo Ha ◽  
Seung-Goo Kang ◽  
Changsoo Shin

We have developed a Laplace-domain full-waveform inversion technique based on a time-domain finite-difference modeling algorithm for efficient 3D inversions. Theoretically, the Laplace-domain Green’s function multiplied by a constant can be obtained regardless of the frequency content in the time-domain source wavelet. Therefore, we can use low-frequency sources and large grids for efficient modeling in the time domain. We Laplace-transform time-domain seismograms to the Laplace domain and calculate the residuals in the Laplace domain. Then, we back-propagate the Laplace-domain residuals in the time domain using a predefined time-domain source wavelet with the amplitude of the residuals. The back-propagated wavefields are transformed to the Laplace domain again to update the velocity model. The inversion results are long-wavelength velocity models on large grids similar to those obtained by the original approach based on Laplace-domain modeling. Inversion examples with 2D Gulf of Mexico field data revealed that the method yielded long-wavelength velocity models comparable with the results of the original Laplace-domain inversion methods. A 3D SEG/EAGE salt model example revealed that the 3D Laplace-domain inversion based on time-domain modeling method can be more efficient than the inversion based on Laplace-domain modeling using an iterative linear system solver.


Geophysics ◽  
2012 ◽  
Vol 77 (4) ◽  
pp. R141-R148 ◽  
Author(s):  
Wansoo Ha ◽  
Changsoo Shin

We tested an axis-transformation technique for modeling wave propagation in the Laplace domain using a finite-difference method. This technique enables us to use small grids near the surface and large grids at depth. Accordingly, we can reduce the number of grids and attain computational efficiency in modeling and inversion in the Laplace domain. We used a dispersion analysis and comparisons between modeled wavefields obtained on the regular and transformed axes. We demonstrated in a synthetic Laplace-domain inversion technique shows that this method is efficient and yields a result comparable to that of a Laplace-domain inversion using a regular grid. In a synthetic inversion example, the memory usage reduced to less than 33%, and the computation time reduced to 39% of those required for the regular grid case using a logarithmic transformation function.


Sign in / Sign up

Export Citation Format

Share Document