Scalable uncertainty estimation for nonlinear inverse problems using parameter reduction, constraint mapping, and geometric sampling: Marine controlled-source electromagnetic examples

Geophysics ◽  
2011 ◽  
Vol 76 (4) ◽  
pp. F263-F281 ◽  
Author(s):  
Michael J. Tompkins ◽  
Juan L. Fernández Martínez ◽  
David L. Alumbaugh ◽  
Tapan Mukerji

We have developed a new uncertainty estimation method that accounts for nonlinearity inherent in most geophysical problems, allows for the explicit search of model posterior space, is scalable, and maintains computational efficiencies on the order of deterministic inverse solutions. We accomplish this by combining an efficient parameter reduction technique, a parameter constraint mapping routine, a sparse geometric sampling scheme, and an efficient forward solver. In order to reduce our model domain and determine an independent basis, we implement both a typical principal component analysis, which factorizes the model covariance matrix, and an alternative compression method, based on singular-value decomposition, which acts on training models, directly, and is storage efficient. Once we have a reduced base, we map parameter constraints, from our original model domain, to this reduced domain to define a bounded geometric region of feasible model space. We utilize an optimal scheme to sample this reduced model space that uses Smolyak sparse grids and minimizes the number of forward solves by finding the sparsest sampling required to produce convergent uncertainty measures. The result is an ensemble of equivalent models, consistent with our inverse solution structure, which is used to infer inverse uncertainty. We tested our method with a 1D synthetic example, a comparison with a published Metropolis-Hastings sampling example, and an extension to 2D problems using a field data inversion.

Geophysics ◽  
2005 ◽  
Vol 70 (1) ◽  
pp. J1-J12 ◽  
Author(s):  
Lopamudra Roy ◽  
Mrinal K. Sen ◽  
Donald D. Blankenship ◽  
Paul L. Stoffa ◽  
Thomas G. Richter

Interpretation of gravity data warrants uncertainty estimation because of its inherent nonuniqueness. Although the uncertainties in model parameters cannot be completely reduced, they can aid in the meaningful interpretation of results. Here we have employed a simulated annealing (SA)–based technique in the inversion of gravity data to derive multilayered earth models consisting of two and three dimensional bodies. In our approach, we assume that the density contrast is known, and we solve for the coordinates or shapes of the causative bodies, resulting in a nonlinear inverse problem. We attempt to sample the model space extensively so as to estimate several equally likely models. We then use all the models sampled by SA to construct an approximate, marginal posterior probability density function (PPD) in model space and several orders of moments. The correlation matrix clearly shows the interdependence of different model parameters and the corresponding trade-offs. Such correlation plots are used to study the effect of a priori information in reducing the uncertainty in the solutions. We also investigate the use of derivative information to obtain better depth resolution and to reduce underlying uncertainties. We applied the technique on two synthetic data sets and an airborne-gravity data set collected over Lake Vostok, East Antarctica, for which a priori constraints were derived from available seismic and radar profiles. The inversion results produced depths of the lake in the survey area along with the thickness of sediments. The resulting uncertainties are interpreted in terms of the experimental geometry and data error.


2020 ◽  
Vol 224 (1) ◽  
pp. 121-137
Author(s):  
James Atterholt ◽  
Sarah J Brownlee ◽  
Gary L Pavlis

SUMMARY We measured anisotropic seismic properties of schists of the Homestake Formation located at a depth of 1478 m in the Sanford Underground Research Facility (SURF) in the Black Hills of South Dakota, USA. We deployed a 24-element linear array of three-component geophones in an area in the Homestake Mine called 19-ledge. An airless jackhammer source was used to shoot two profiles: (1) a walkaway survey to appraise any distance dependence and (2) a fan shot profile to measure variations with azimuth. Slowness estimates from the fan shot profile show a statistically significant deviation with azimuth with the expected 180° variation with azimuth. We measured P-wave particle motion deviations from data rotated to ray coordinates using three methods: (1) a conventional principal component method, (2) a novel grid search method that maximized longitudinal motion over a range of search angles and (3) the multiwavelet method. The multiwavelet results were computed in two frequency bands of 200–600 and 100–300 Hz. Results were binned by azimuth and averaged with a robust estimation method with error bars estimated by a bootstrap method. The particle motion results show large, statistically significant variations with azimuth with a 180° cyclicity. We modelled the azimuthal variations in compressional wave speed and angular deviation from purely longitudinal particle motion of P-waves using an elastic tensor method to appraise the relative importance of crystalline fabric relative to fracturing parallel to foliation. The model used bulk averages of crystal fabric measured for an analogous schist sample from southeast Vermont rotated to the Homestake Formation foliation directions supplied by SURF from old mine records. We found with average crustal crack densities crack induced anisotropy had only a small effect on the observables. We found strong agreement in the traveltime data. The observed amplitudes of deviations of P particle motion showed significantly larger variation than the model predictions and a 20° phase shift in azimuth. We attribute the inadequacies of the model fit to the particle motion data to inadequacies in the analogue rock and/or near receiver distortions from smaller scale heterogeneity. We discuss the surprising variability of signals recorded in this experimental data. We show clear examples of unexplained resonances and unexpected variations on a scale much smaller than a wavelength that has broad implications for wave propagation in real rocks.


2014 ◽  
Vol 945-949 ◽  
pp. 2801-2805
Author(s):  
Jie Wan ◽  
Zhi Gang Zhao ◽  
Guo Rui Ren ◽  
Cheng Cheng Qiao ◽  
Cheng Rui Lei ◽  
...  

At present, with the development of wind’s energy application and disaster prevention, the windspeed uncertainty must be estimated because of the existing large gap between the requirement of prediction performance and current techniques owing to it’s strong random fluctuation. In this paper, a new method for windspeed uncertainty estimation is proposed on the base of physical mechanism, the inherent amplitude modulation effect in windspeed. According to the the atmosphere motion power spectrum in low-layers, the actual windspeed is usually decomposed into the hourly average windspeed and the turbulent residual error by many researchers. And the turbulent residual error and the turbulent standard deviation is modulated by the hourly average windspeed. Moreover experiments further show that the confidence interval of windspeed random fluctuation uncertainty based on it’s amplitude modulation effect is more rigorous than that obtained by general statistical model. As a result, this uncertainty estimation method has certain physical academic meaning and engineering application value both in the electric system and the other wind domain.


2009 ◽  
Vol 10 (6) ◽  
pp. 1414-1429 ◽  
Author(s):  
Ali Behrangi ◽  
Kuo-lin Hsu ◽  
Bisher Imam ◽  
Soroosh Sorooshian ◽  
George J. Huffman ◽  
...  

Abstract Visible and infrared data obtained from instruments onboard geostationary satellites have been extensively used for monitoring clouds and their evolution. The Advanced Baseline Imager (ABI) that will be launched onboard the Geostationary Operational Environmental Satellite-R (GOES-R) series in the near future will offer a larger range of spectral bands; hence, it will provide observations of cloud and rain systems at even finer spatial, temporal, and spectral resolutions than are possible with the current GOES. In this paper, a new method called Precipitation Estimation from Remotely Sensed information using Artificial Neural Networks–Multispectral Analysis (PERSIANN-MSA) is proposed to evaluate the effect of using multispectral imagery on precipitation estimation. The proposed approach uses a self-organizing feature map (SOFM) to classify multidimensional input information, extracted from each grid box and corresponding textural features of multispectral bands. In addition, principal component analysis (PCA) is used to reduce the dimensionality to a few independent input features while preserving most of the variations of all input information. The above method is applied to estimate rainfall using multiple channels of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the Meteosat Second Generation (MSG) satellite. In comparison to the use of a single thermal infrared channel, the analysis shows that using multispectral data has the potential to improve rain detection and estimation skills with an average of more than 50% gain in equitable threat score for rain/no-rain detection, and more than 20% gain in correlation coefficient associated with rain-rate estimation.


2010 ◽  
Vol 447-448 ◽  
pp. 564-568
Author(s):  
Kiyoshi Takamasu ◽  
Satoru Takahashi ◽  
Xin Chen

The uncertainty estimation of coordinate and profile measurement is essential for accurate measurement and establishment of traceability. We proposed an uncertainty propagation method to estimate the uncertainty of coordinate and profile measurement. In this article, the multi sensor algorithm with uncertainty estimation method is described for the profile measurement. Additionally, two examples of multi sensor method are introduced. According to the simulation results of assessing uncertainty and the experimental results, the validity of the method was confirmed.


Author(s):  
A. J. Brzezinski ◽  
Y. Wang ◽  
D. K. Choi ◽  
X. Qiao ◽  
J. Ni

Condition monitoring (CM) is an effective way to improve the tool life of a cutting tool. However, CM techniques have not been applied to monitor tool wear in an industrial gear shaving application. Therefore, this paper introduces a novel, sensor-based, data-driven, tool wear estimation method for monitoring gear shaver tool condition. The method is applied on an industrial gear shaving machine and used to differentiate between four different tool wear conditions (new, slightly worn, significantly worn, and broken). This research focuses on combining, expanding, and implementing CM techniques in an application where no previous work has been done. In order to realize CM, this paper discusses each aspect of CM, beginning with data collection and pre-processing. Feature extraction (in the time, frequency, and time-frequency domains) is then explained. Furthermore, feature dimension reduction using principal component analysis (PCA) is described. Finally, feature fusion using a multi-layer perceptron (MLP) type of artificial neural network (ANN) is presented.


Sign in / Sign up

Export Citation Format

Share Document