scholarly journals PERSIANN-MSA: A Precipitation Estimation Method from Satellite-Based Multispectral Analysis

2009 ◽  
Vol 10 (6) ◽  
pp. 1414-1429 ◽  
Author(s):  
Ali Behrangi ◽  
Kuo-lin Hsu ◽  
Bisher Imam ◽  
Soroosh Sorooshian ◽  
George J. Huffman ◽  
...  

Abstract Visible and infrared data obtained from instruments onboard geostationary satellites have been extensively used for monitoring clouds and their evolution. The Advanced Baseline Imager (ABI) that will be launched onboard the Geostationary Operational Environmental Satellite-R (GOES-R) series in the near future will offer a larger range of spectral bands; hence, it will provide observations of cloud and rain systems at even finer spatial, temporal, and spectral resolutions than are possible with the current GOES. In this paper, a new method called Precipitation Estimation from Remotely Sensed information using Artificial Neural Networks–Multispectral Analysis (PERSIANN-MSA) is proposed to evaluate the effect of using multispectral imagery on precipitation estimation. The proposed approach uses a self-organizing feature map (SOFM) to classify multidimensional input information, extracted from each grid box and corresponding textural features of multispectral bands. In addition, principal component analysis (PCA) is used to reduce the dimensionality to a few independent input features while preserving most of the variations of all input information. The above method is applied to estimate rainfall using multiple channels of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the Meteosat Second Generation (MSG) satellite. In comparison to the use of a single thermal infrared channel, the analysis shows that using multispectral data has the potential to improve rain detection and estimation skills with an average of more than 50% gain in equitable threat score for rain/no-rain detection, and more than 20% gain in correlation coefficient associated with rain-rate estimation.

Proceedings ◽  
2018 ◽  
Vol 2 (10) ◽  
pp. 565
Author(s):  
Nguyen Nguyen Vu ◽  
Le Van Trung ◽  
Tran Thi Van

This article presents the methodology for developing a statistical model for monitoring salinity intrusion in the Mekong Delta based on the integration of satellite imagery and in-situ measurements. We used Landsat-8 Operational Land Imager and Thermal Infrared Sensor (Landsat- 8 OLI and TIRS) satellite data to establish the relationship between the planetary reflectance and the ground measured data in the dry season during 2014. The three spectral bands (blue, green, red) and the principal component band were used to obtain the most suitable models. The selected model showed a good correlation with the exponential function of the principal component band and the ground measured data (R2 > 0.8). Simulation of the salinity distribution along the river shows the intrusion of a 4 g/L salt boundary from the estuary to the inner field of more than 50 km. The developed model will be an active contribution, providing managers with adaptation and response solutions suitable for intrusion in the estuary as well as the inner field of the Mekong Delta.


Solid Earth ◽  
2016 ◽  
Vol 7 (2) ◽  
pp. 323-340 ◽  
Author(s):  
Sascha Schneiderwind ◽  
Jack Mason ◽  
Thomas Wiatr ◽  
Ioannis Papanikolaou ◽  
Klaus Reicherter

Abstract. Two normal faults on the island of Crete and mainland Greece were studied to test an innovative workflow with the goal of obtaining a more objective palaeoseismic trench log, and a 3-D view of the sedimentary architecture within the trench walls. Sedimentary feature geometries in palaeoseismic trenches are related to palaeoearthquake magnitudes which are used in seismic hazard assessments. If the geometry of these sedimentary features can be more representatively measured, seismic hazard assessments can be improved. In this study more representative measurements of sedimentary features are achieved by combining classical palaeoseismic trenching techniques with multispectral approaches. A conventional trench log was firstly compared to results of ISO (iterative self-organising) cluster analysis of a true colour photomosaic representing the spectrum of visible light. Photomosaic acquisition disadvantages (e.g. illumination) were addressed by complementing the data set with active near-infrared backscatter signal image from t-LiDAR measurements. The multispectral analysis shows that distinct layers can be identified and it compares well with the conventional trench log. According to this, a distinction of adjacent stratigraphic units was enabled by their particular multispectral composition signature. Based on the trench log, a 3-D interpretation of attached 2-D ground-penetrating radar (GPR) profiles collected on the vertical trench wall was then possible. This is highly beneficial for measuring representative layer thicknesses, displacements, and geometries at depth within the trench wall. Thus, misinterpretation due to cutting effects is minimised. This manuscript combines multiparametric approaches and shows (i) how a 3-D visualisation of palaeoseismic trench stratigraphy and logging can be accomplished by combining t-LiDAR and GPR techniques, and (ii) how a multispectral digital analysis can offer additional advantages to interpret palaeoseismic and stratigraphic data. The multispectral data sets are stored allowing unbiased input for future (re)investigations.


Silva Fennica ◽  
2020 ◽  
Vol 54 (2) ◽  
Author(s):  
Olga Grigorieva ◽  
Olga Brovkina ◽  
Alisher Saidov

This study proposes an original method for tree species classification by satellite remote sensing. The method uses multitemporal multispectral (Landsat OLI) and hyperspectral (Resurs-P) data acquired from determined vegetation periods. The method is based on an original database of spectral features taking into account seasonal variations of tree species spectra. Changes in the spectral signatures of forest classes are analyzed and new spectral–temporal features are created for the classification. Study sites are located in the Czech Republic and northwest (NW) Russia. The differences in spectral reflectance between tree species are shown as statistically significant in the sub-seasons of spring, first half of summer, and main autumn for both study sites. Most of the errors are related to the classification of deciduous species and misclassification of birch as pine (NW Russia site), pine as mixture of pine and spruce, and pine as mixture of spruce and beech (Czech site). Forest species are mapped with accuracy as high as 80% (NW Russia site) and 81% (Czech site). The classification using multitemporal multispectral data has a kappa coefficient 1.7 times higher than does that of classification using a single multispectral image and 1.3 times greater than that of the classification using single hyperspectral images. Potentially, classification accuracy can be improved by the method when applying multitemporal satellite hyperspectral data, such as in using new, near-future products EnMap and/or HyspIRI with high revisit time.


2021 ◽  
Vol 45 (2) ◽  
pp. 235-244
Author(s):  
A.S. Minkin ◽  
O.V. Nikolaeva ◽  
A.A. Russkov

The paper is aimed at developing an algorithm of hyperspectral data compression that combines small losses with high compression rate. The algorithm relies on a principal component analysis and a method of exhaustion. The principal components are singular vectors of an initial signal matrix, which are found by the method of exhaustion. A retrieved signal matrix is formed in parallel. The process continues until a required retrieval error is attained. The algorithm is described in detail and input and output parameters are specified. Testing is performed using AVIRIS data (Airborne Visible-Infrared Imaging Spectrometer). Three images of differently looking sky (clear sky, partly clouded sky, and overcast skies) are analyzed. For each image, testing is performed for all spectral bands and for a set of bands from which high water-vapour absorption bands are excluded. Retrieval errors versus compression rates are presented. The error formulas include the root mean square deviation, the noise-to-signal ratio, the mean structural similarity index, and the mean relative deviation. It is shown that the retrieval errors decrease by more than an order of magnitude if spectral bands with high gas absorption are disregarded. It is shown that the reason is that weak signals in the absorption bands are measured with great errors, leading to a weak dependence between the spectra in different spatial pixels. A mean cosine distance between the spectra in different spatial pixels is suggested to be used to assess the image compressibility.


2019 ◽  
Vol 11 (6) ◽  
pp. 669 ◽  
Author(s):  
Valerio Lombardo ◽  
Stefano Corradini ◽  
Massimo Musacchio ◽  
Malvina Silvestri ◽  
Jacopo Taddeucci

The high temporal resolution of the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instrument aboard Meteosat Second Generation (MSG) provides the opportunity to investigate eruptive processes and discriminate different styles of volcanic activity. To this goal, a new detection method based on the wavelet transform of SEVIRI infrared data is proposed. A statistical analysis is performed on wavelet smoothed data derived from SEVIRI Mid-Infrared( MIR) radiances collected from 2011 to 2017 on Mt Etna (Italy) volcano. Time-series analysis of the kurtosis of the radiance distribution allows for reliable hot-spot detection and precise timing of the start and end of eruptive events. Combined kurtosis and gradient trends allow for discrimination of the different activity styles of the volcano, from effusive lava flow, through Strombolian explosions, to paroxysmal fountaining. The same data also allow for the prediction, at the onset of an eruption, of what will be its dominant eruptive style at later stages. The results obtained have been validated against ground-based and literature data.


2020 ◽  
Vol 224 (1) ◽  
pp. 121-137
Author(s):  
James Atterholt ◽  
Sarah J Brownlee ◽  
Gary L Pavlis

SUMMARY We measured anisotropic seismic properties of schists of the Homestake Formation located at a depth of 1478 m in the Sanford Underground Research Facility (SURF) in the Black Hills of South Dakota, USA. We deployed a 24-element linear array of three-component geophones in an area in the Homestake Mine called 19-ledge. An airless jackhammer source was used to shoot two profiles: (1) a walkaway survey to appraise any distance dependence and (2) a fan shot profile to measure variations with azimuth. Slowness estimates from the fan shot profile show a statistically significant deviation with azimuth with the expected 180° variation with azimuth. We measured P-wave particle motion deviations from data rotated to ray coordinates using three methods: (1) a conventional principal component method, (2) a novel grid search method that maximized longitudinal motion over a range of search angles and (3) the multiwavelet method. The multiwavelet results were computed in two frequency bands of 200–600 and 100–300 Hz. Results were binned by azimuth and averaged with a robust estimation method with error bars estimated by a bootstrap method. The particle motion results show large, statistically significant variations with azimuth with a 180° cyclicity. We modelled the azimuthal variations in compressional wave speed and angular deviation from purely longitudinal particle motion of P-waves using an elastic tensor method to appraise the relative importance of crystalline fabric relative to fracturing parallel to foliation. The model used bulk averages of crystal fabric measured for an analogous schist sample from southeast Vermont rotated to the Homestake Formation foliation directions supplied by SURF from old mine records. We found with average crustal crack densities crack induced anisotropy had only a small effect on the observables. We found strong agreement in the traveltime data. The observed amplitudes of deviations of P particle motion showed significantly larger variation than the model predictions and a 20° phase shift in azimuth. We attribute the inadequacies of the model fit to the particle motion data to inadequacies in the analogue rock and/or near receiver distortions from smaller scale heterogeneity. We discuss the surprising variability of signals recorded in this experimental data. We show clear examples of unexplained resonances and unexpected variations on a scale much smaller than a wavelength that has broad implications for wave propagation in real rocks.


2002 ◽  
Vol 20 (1) ◽  
pp. 107-113 ◽  
Author(s):  
Y. Zhou ◽  
X. Qie ◽  
S. Soula

Abstract. In this paper, the correlation between cloud-to-ground (CG) lightning and precipitation has been studied by making use of the data from weather radar, meteorological soundings, and a lightning location system that includes three direction finders about 40 km apart from each other in the Pingliang area of east Gansu province in P. R. China. We have studied the convective systems that developed during two cold front processes passing over the observation area, and found that the CG lightning can be an important factor in the precipitation estimation. The regression equation between the average precipitation intensity (R) and the number of CG lightning flashes (L) in the main precipitation period is R = 1.69 ln (L) - 0.27, and the correlation coefficient r is 0.86. The CG lightning flash rate can be used as an indicator of the formation and development of the convective weather system. Another more exhaustive precipitation estimation method has been developed by analyzing the temporal and spatial distributions of the precipitation relative to the location of the CG lightning flashes. Precipitation calculated from the CG lightning flashes is very useful, especially in regions with inadequate radar cover.Key words. Meteorology and atmospheric dynamics (atmospheric electricity; lightning; precipitation)


Sign in / Sign up

Export Citation Format

Share Document