Passive seismic tomography for three-dimensional time-lapse imaging of mining-induced rock mass changes

2012 ◽  
Vol 31 (3) ◽  
pp. 338-345 ◽  
Author(s):  
Erik Westman ◽  
K. Luxbacher ◽  
S. Schafrik
2017 ◽  
Vol 36 (5) ◽  
pp. 519-528 ◽  
Author(s):  
Tomoyo Tanaka ◽  
Mitsuhiro Hoshijima ◽  
Junko Sunaga ◽  
Takashi Nishida ◽  
Mana Hashimoto ◽  
...  

2015 ◽  
Vol 106 (6) ◽  
pp. 757-765 ◽  
Author(s):  
Ruriko Sakamoto ◽  
M. Mamunur Rahman ◽  
Manami Shimomura ◽  
Manabu Itoh ◽  
Tetsuya Nakatsura

2013 ◽  
Vol 19 (3) ◽  
pp. 596-607 ◽  
Author(s):  
Ghania Nina Attik ◽  
Nelly Pradelle-Plasse ◽  
Doris Campos ◽  
Pierre Colon ◽  
Brigitte Grosgogeat

AbstractThe purpose of this study was to investigate thein vitrobiocompatibility of two dental composites (namely A and B) with similar chemical composition used for direct restoration using three-dimensional confocal laser scanning microscopy (CLSM) time-lapse imaging. Time-lapse imaging was performed on cultured human HGF-1 fibroblast-like cells after staining using Live/Dead®. Image analysis showed a higher mortality rate in the presence of composite A than composite B. The viability rate decreased in a time-dependent manner during the 5 h of exposure. Morphological alterations were associated with toxic effects; cells were enlarged and more rounded in the presence of composite A as shown by F-actin and cell nuclei staining. Resazurin assay was used to confirm the active potential of composites in cell metabolism; results showed severe cytotoxic effects in the presence of both no light-curing composites after 24 h of direct contact. However, extracts of polymerized composites induced a moderate decrease in cell metabolism after the same incubation period. Composite B was significantly better tolerated than composite A at all investigated end points and all time points. The finding confirmed that the used CLSM method was sufficiently sensitive to differentiate the biocompatibility behavior of two composites based on similar methacrylate monomers.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sangwoo Park ◽  
Lucy Eunju Lee ◽  
Hanna Kim ◽  
Ji Eun Kim ◽  
Seung Jun Lee ◽  
...  

AbstractOptical diffraction tomography (ODT) enables imaging of unlabeled intracellular components by measuring the three-dimensional (3D) refractive index (RI). We aimed to detect intracellular monosodium urate (MSU) crystals in synovial leukocytes derived from gout patients using ODT. The 3D RI values of the synthetic MSU crystals, measured by ODT, ranged between 1.383 and 1.440. After adding synthetic MSU crystals to a macrophage, RI tomograms were reconstructed using ODT, and the reconstructed RI tomograms discerned intracellular and extracellular MSU crystals. We observed unlabeled synthetic MSU crystal entry into the cytoplasm of a macrophage through time-lapse imaging. Furthermore, using gout patient-derived synovial leukocytes, we successfully obtained RI tomogram images of intracellular MSU crystals. The 3D RI identification of MSU crystals was verified with birefringence through polarization-sensitive ODT measurements. Together, our results provide evidence that this novel ODT can identify birefringent MSU crystals in synovial leukocytes of patients with gout.


Geophysics ◽  
2017 ◽  
Vol 82 (3) ◽  
pp. B79-B93 ◽  
Author(s):  
Saeid Cheraghi ◽  
Donald J. White ◽  
Deyan Draganov ◽  
Gilles Bellefleur ◽  
James A. Craven ◽  
...  

Seismic reflection interferometry has recently been tested in a few resource-exploration applications. We have evaluated passive seismic interferometry results for data from the Aquistore [Formula: see text] storage site, Saskatchewan, Canada, with the objective of testing the method’s ability to image the subsurface geology and its potential for time-lapse imaging. We analyzed passive seismic data recorded along two perpendicular geophone lines for two time periods that include 23 days in June 2014 and 13 days in February 2015. Beam-forming analysis showed that a nearby power plant is the dominant source of ambient noise. We retrieved virtual shot gathers not only by correlating long noise panels (1 h) for both recording periods, but also by correlating shorter noise panels (10 s) from two days of each recording period. We applied illumination diagnosis to the noise panels from the two chosen days for each period to help suppress the surface waves. Comparisons of the common-midpoints stacked sections, resulting from the virtual shot gathers, with colocated active-source images and log-based synthetic seismograms showed that the best ambient-noise images were obtained for the longest recording periods. The application of illumination diagnosis revealed that only a small percentage of the noise panels are dominated by body waves. Thus, images formed using only this subset of noise panels failed to improve the images obtained from the 23 and 13 days of noise recording. To evaluate the passive images, we performed log-based correlations that showed moderate correlation ranging from approximately 0.5–0.65 in the two-way time range of 0.8–1.5 s. For the 13 to 23 days of noise used in our analysis, the resulting images at the reservoir depth of 3200 m or [Formula: see text] are unlikely to be suitable for time-lapse imaging at this site. This is most likely due to the limited directional illumination and dominance of surface-wave noise.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jonathan M. Taylor ◽  
Carl J. Nelson ◽  
Finnius A. Bruton ◽  
Aryan Kaveh ◽  
Charlotte Buckley ◽  
...  

AbstractThree-dimensional fluorescence time-lapse imaging of the beating heart is extremely challenging, due to the heart’s constant motion and a need to avoid pharmacological or phototoxic damage. Although real-time triggered imaging can computationally “freeze” the heart for 3D imaging, no previous algorithm has been able to maintain phase-lock across developmental timescales. We report a new algorithm capable of maintaining day-long phase-lock, permitting routine acquisition of synchronised 3D + time video time-lapse datasets of the beating zebrafish heart. This approach has enabled us for the first time to directly observe detailed developmental and cellular processes in the beating heart, revealing the dynamics of the immune response to injury and witnessing intriguing proliferative events that challenge the established literature on cardiac trabeculation. Our approach opens up exciting new opportunities for direct time-lapse imaging studies over a 24-hour time course, to understand the cellular mechanisms underlying cardiac development, repair and regeneration.


Acta Naturae ◽  
2016 ◽  
Vol 8 (3) ◽  
pp. 88-96
Author(s):  
Yu. K. Doronin ◽  
I. V. Senechkin ◽  
L. V. Hilkevich ◽  
M. A. Kurcer

In order to estimate the diversity of embryo cleavage relatives to embryo progress (blastocyst formation), time-lapse imaging data of preimplantation human embryo development were used. This retrospective study is focused on the topographic features and time parameters of the cleavages, with particular emphasis on the lengths of cleavage cycles and the genealogy of blastomeres in 2- to 8-cell human embryos. We have found that all 4-cell human embryos have four developmental variants that are based on the sequence of appearance and orientation of cleavage planes during embryo cleavage from 2 to 4 blastomeres. Each variant of cleavage shows a strong correlation with further developmental dynamics of the embryos (different cleavage cycle characteristics as well as lengths of blastomere cycles). An analysis of the sequence of human blastomere divisions allowed us to postulate that the effects of zygotic determinants are eliminated as a result of cleavage, and that, thereafter, blastomeres acquire the ability of own syntheses, regulation, polarization, formation of functional contacts, and, finally, of specific differentiation. This data on the early development of human embryos obtained using noninvasive methods complements and extend our understanding of the embryogenesis of eutherian mammals and may be applied in the practice of reproductive technologies.


Sign in / Sign up

Export Citation Format

Share Document