Numerical simulation analysis of the effect of water saturation on elastic wave velocity in gas-water two phase fractured carbonate rocks

2017 ◽  
Author(s):  
Xi Duan* ◽  
Xiangjun Liu
Geophysics ◽  
1952 ◽  
Vol 17 (4) ◽  
pp. 739-752 ◽  
Author(s):  
D. S. Hughes ◽  
J. L. Kelly

The velocity of dilatational waves in four sandstones has been measured as a function of pressure in the range 50 to 1000 bars at room temperature and at 100°C. At least two cores from each sample were run, one dry and one saturated with water. In addition two cores from one sample were run at several partial saturations. The porosities of the samples varied from about 8 to 20 percent. The effect of water content is dependent on pressure. At low pressures (50 bars) the velocity rises sharply at small saturations (0–10 percent), remains constant with saturation 10 to 90 percent and then decreases as the saturation approaches 100 percent. At 50 bars the velocity at 100 percent saturation is generally higher than that at 00 percent saturation. Even for the one exception an extrapolation would indicate this to be true at atmospheric pressure. As the pressure is increased the rise at low saturations decreases; at 500 bars it disappears. The velocity is almost constant with saturation until about 90 percent saturation is reached. It then decreases rapidly as 100 percent saturation is approached. A qualitative explanation of these results is given.


Geophysics ◽  
2010 ◽  
Vol 75 (6) ◽  
pp. E191-E204 ◽  
Author(s):  
Carmen T. Gomez ◽  
Jack Dvorkin ◽  
Tiziana Vanorio

The relations among the resistivity, elastic-wave velocity, porosity, and permeability in Fontainebleau sandstone samples from the Ile de France region, around Paris, France were experimentally revisited. These samples followed a permeability-porosity relation given by Kozeny-Carman’s equation. For the resistivity measurements, the samples were partially saturated with brine. Archie’s equation was used to estimate resistivity at 100% water saturation, assuming a saturation exponent, [Formula: see text]. Using self-consistent (SC) approximations modeling with grain aspect ratio 1, and pore aspect ratio between 0.02 and 0.10, the experimental data fall into this theoretical range. The SC curve with the pore aspect ratio 0.05 appears to be close to the values measured in the entire porosity range. The elastic-wave velocity was mea-sured on these dry samples for confining pressure between 0 and [Formula: see text]. A loading and unloading cycle was used and did not produce any significant hysteresis in the velocity-pressure behavior. For the velocity data, using the SC model with a grain aspect ratio 1 and pore aspect ratios 0.2, 0.1, and 0.05 fit the data at [Formula: see text]; pore aspect ratios ranging between 0.1, 0.05, and 0.02 were a better fit for the data at [Formula: see text]. Both velocity and resistivity in clean sandstones can be modeled using the SC approximation. In addition, a linear fit was found between the P-wave velocity and the decimal logarithm of the normalized resistivity, with deviations that correlate with differences in permeability. Combining the stiff sand model and Archie for cementation exponents between 1.6 and 2.1, resistivity was modeled as a function of P-wave velocity for these clean sandstones.


1997 ◽  
Vol 62 (11) ◽  
pp. 1698-1709
Author(s):  
Miloslav Hartman ◽  
Zdeněk Beran ◽  
Václav Veselý ◽  
Karel Svoboda

The onset of the aggregative mode of liquid-solid fluidization was explored. The experimental findings were interpreted by means of the dynamic (elastic) wave velocity and the voidage propagation (continuity) wave velocity. For widely different systems, the mapping of regimes has been presented in terms of the Archimedes number, the Froude number and the fluid-solid density ratio. The proposed diagram also depicts the typical Geldart's Group A particles fluidized with air.


2019 ◽  
Vol 71 (1) ◽  
Author(s):  
Tohru Watanabe ◽  
Miho Makimura ◽  
Yohei Kaiwa ◽  
Guillaume Desbois ◽  
Kenta Yoshida ◽  
...  

AbstractElastic wave velocity and electrical conductivity in a brine-saturated granitic rock were measured under confining pressures of up to 150 MPa and microstructure of pores was examined with SEM on ion-milled surfaces to understand the pores that govern electrical conduction at high pressures. The closure of cracks under pressure causes the increase in velocity and decrease in conductivity. Conductivity decreases steeply below 10 MPa and then gradually at higher pressures. Though cracks are mostly closed at the confining pressure of 150 MPa, brine must be still interconnected to show observed conductivity. SEM observation shows that some cracks have remarkable variation in aperture. The aperture varies from ~ 100 nm to ~ 3 μm along a crack. FIB–SEM observation suggests that wide aperture parts are interconnected in a crack. Both wide and narrow aperture parts work parallel as conduction paths at low pressures. At high pressures, narrow aperture parts are closed but wide aperture parts are still open to maintain conduction paths. The closure of narrow aperture parts leads to a steep decrease in conductivity, since narrow aperture parts dominate cracks. There should be cracks in various sizes in the crust: from grain boundaries to large faults. A crack must have a variation in aperture, and wide aperture parts must govern the conduction paths at depths. A simple tube model was employed to estimate the fluid volume fraction. The fluid volume fraction of 10−4–10−3 is estimated for the conductivity of 10−2 S/m. Conduction paths composed of wide aperture parts are consistent with observed moderate fluctuations (< 10%) in seismic velocity in the crust.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1513 ◽  
Author(s):  
Naser Golsanami ◽  
Xuepeng Zhang ◽  
Weichao Yan ◽  
Linjun Yu ◽  
Huaimin Dong ◽  
...  

Seismic data and nuclear magnetic resonance (NMR) data are two of the highly trustable kinds of information in hydrocarbon reservoir engineering. Reservoir fluids influence the elastic wave velocity and also determine the NMR response of the reservoir. The current study investigates different pore types, i.e., micro, meso, and macropores’ contribution to the elastic wave velocity using the laboratory NMR and elastic experiments on coal core samples under different fluid saturations. Once a meaningful relationship was observed in the lab, the idea was applied in the field scale and the NMR transverse relaxation time (T2) curves were synthesized artificially. This task was done by dividing the area under the T2 curve into eight porosity bins and estimating each bin’s value from the seismic attributes using neural networks (NN). Moreover, the functionality of two statistical ensembles, i.e., Bag and LSBoost, was investigated as an alternative tool to conventional estimation techniques of the petrophysical characteristics; and the results were compared with those from a deep learning network. Herein, NMR permeability was used as the estimation target and porosity was used as a benchmark to assess the reliability of the models. The final results indicated that by using the incremental porosity under the T2 curve, this curve could be synthesized using the seismic attributes. The results also proved the functionality of the selected statistical ensembles as reliable tools in the petrophysical characterization of the hydrocarbon reservoirs.


Sign in / Sign up

Export Citation Format

Share Document