scholarly journals Analytical path-summation imaging of seismic diffractions

Geophysics ◽  
2017 ◽  
Vol 82 (1) ◽  
pp. S51-S59 ◽  
Author(s):  
Dmitrii Merzlikin ◽  
Sergey Fomel

Diffraction imaging aims to emphasize small subsurface objects, such as faults, fracture swarms, and channels. Similar to classical reflection imaging, velocity analysis is crucially important for accurate diffraction imaging. Path-summation migration provides an imaging method that produces an image of the subsurface without picking a velocity model. Previous methods of path-summation imaging involve a discrete summation of the images corresponding to all possible migration velocity distributions within a predefined integration range and thus involve a significant computational cost. We have developed a direct analytical formula for path-summation imaging based on the continuous integration of the images along the velocity dimension, which reduces the cost to that of only two fast Fourier transforms. The analytic approach also enabled automatic migration velocity extraction from diffractions using a double path-summation migration framework. Synthetic and field data examples confirm the efficiency of the proposed techniques.

Geophysics ◽  
2002 ◽  
Vol 67 (4) ◽  
pp. 1202-1212 ◽  
Author(s):  
Hervé Chauris ◽  
Mark S. Noble ◽  
Gilles Lambaré ◽  
Pascal Podvin

We present a new method based on migration velocity analysis (MVA) to estimate 2‐D velocity models from seismic reflection data with no assumption on reflector geometry or the background velocity field. Classical approaches using picking on common image gathers (CIGs) must consider continuous events over the whole panel. This interpretive step may be difficult—particularly for applications on real data sets. We propose to overcome the limiting factor by considering locally coherent events. A locally coherent event can be defined whenever the imaged reflectivity locally shows lateral coherency at some location in the image cube. In the prestack depth‐migrated volume obtained for an a priori velocity model, locally coherent events are picked automatically, without interpretation, and are characterized by their positions and slopes (tangent to the event). Even a single locally coherent event has information on the unknown velocity model, carried by the value of the slope measured in the CIG. The velocity is estimated by minimizing these slopes. We first introduce the cost function and explain its physical meaning. The theoretical developments lead to two equivalent expressions of the cost function: one formulated in the depth‐migrated domain on locally coherent events in CIGs and the other in the time domain. We thus establish direct links between different methods devoted to velocity estimation: migration velocity analysis using locally coherent events and slope tomography. We finally explain how to compute the gradient of the cost function using paraxial ray tracing to update the velocity model. Our method provides smooth, inverted velocity models consistent with Kirchhoff‐type migration schemes and requires neither the introduction of interfaces nor the interpretation of continuous events. As for most automatic velocity analysis methods, careful preprocessing must be applied to remove coherent noise such as multiples.


Geophysics ◽  
2018 ◽  
Vol 83 (5) ◽  
pp. S447-S457 ◽  
Author(s):  
Peng Lin ◽  
Suping Peng ◽  
Jingtao Zhao ◽  
Xiaoqin Cui ◽  
Wenfeng Du

Seismic diffractions contain valuable information regarding small-scale inhomogeneities or discontinuities, and therefore they can be used for seismic interpretation in the exploitation of hydrocarbon reservoirs. Velocity analysis is a necessary step for accurate imaging of these diffractions. A new method for diffraction velocity analysis and imaging is proposed that uses an improved adaptive minimum variance beamforming technique. This method incorporates the minimum variance, coherence factor, and correlation properties to improve the signal-to-noise ratio and enhance correlations. Our method can make seismic diffractions become better focused in semblance panels, allowing for the optimal migration velocity for diffractions to be accurately picked. Synthetic and field examples demonstrate that the migration velocity for the diffractions can differ from that for the reflections. The results suggest that the diffraction velocity analysis and imaging method is feasible for accurately locating and identifying small-scale discontinuities, which leads to the possibility of using this approach for practical application and seismic interpretation.


Geophysics ◽  
2013 ◽  
Vol 78 (1) ◽  
pp. U19-U29 ◽  
Author(s):  
Yaxun Tang ◽  
Biondo Biondi

We apply target-oriented wave-equation migration velocity analysis to a 3D field data set acquired from the Gulf of Mexico. Instead of using the original surface-recorded data set, we use a new data set synthesized specifically for velocity analysis to update subsalt velocities. The new data set is generated based on an initial unfocused target image and by a novel application of 3D generalized Born wavefield modeling, which correctly preserves velocity kinematics by modeling zero and nonzero subsurface-offset-domain images. The target-oriented inversion strategy drastically reduces the data size and the computation domain for 3D wave-equation migration velocity analysis, greatly improving its efficiency and flexibility. We apply differential semblance optimization (DSO) using the synthesized new data set to optimize subsalt velocities. The updated velocity model significantly improves the continuity of subsalt reflectors and yields flattened angle-domain common-image gathers.


Geophysics ◽  
2017 ◽  
Vol 82 (2) ◽  
pp. U25-U35 ◽  
Author(s):  
Luke Decker ◽  
Dmitrii Merzlikin ◽  
Sergey Fomel

We perform seismic diffraction imaging and time-migration velocity analysis by separating diffractions from specular reflections and decomposing them into slope components. We image the slope components using migration velocity extrapolation in time-space-slope coordinates. The extrapolation is described by a convection-type partial differential equation and implemented in a highly parallel manner in the Fourier domain. Synthetic and field data experiments show that the proposed algorithms are able to detect accurate time-migration velocities by measuring the flatness of diffraction events in slope gathers for single- and multiple-offset data.


Geophysics ◽  
2016 ◽  
Vol 81 (6) ◽  
pp. S399-S408 ◽  
Author(s):  
Jingtao Zhao ◽  
Suping Peng ◽  
Wenfeng Du ◽  
Xiaoting Li

Clarifying and locating small-scale discontinuities or inhomogeneities in the subsurface, such as faults and collapsed columns, plays a vital role in safe coal mining because these discontinuities or inhomogeneities may destroy the continuity of layers and result in dangerous mining accidents. Diffractions carry key information from these objects and therefore can be used for high-resolution imaging. However, diffracted/scattered waves are much weaker than reflected waves and consequently require separation before being imaged. We have developed a Mahalanobis-based diffraction imaging method by modifying the classic Kirchhoff formula with an exponential function to account for the dynamic differences between reflections and diffractions in the shot domain. The imaging method can automatically account for destroying of reflected waves, constructive stacking of diffracted waves, and strengthening of scattered waves. The method can overcome the difficulties in handling Fresnel apertures, and it is suitable for high-resolution imaging because of the consistency of the waveforms in the shot domain. Although the proposed method in principle requires a good migration velocity model for calculating elementary diffraction traveltimes, it is robust to an inaccurate migration velocity model. Two numerical experiments demonstrate the feasibility of the proposed method in removing reflections and highlighting diffractions, and one field application further confirms its efficiency in resolving masked faults and collapsed columns.


Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. U1-U11 ◽  
Author(s):  
Chunhui Dong ◽  
Shangxu Wang ◽  
Jianfeng Zhang ◽  
Jingsheng Ma ◽  
Hao Zhang

Migration velocity analysis is a labor-intensive part of the iterative prestack time migration (PSTM) process. We have developed a velocity estimation scheme to improve the efficiency of the velocity analysis process using an automatic approach. Our scheme is the numerical implementation of the conventional velocity analysis process based on residual moveout analysis. The key aspect of this scheme is the automatic event picking in the common-reflection point (CRP) gathers, which is implemented by semblance scanning trace by trace. With the picked traveltime curves, we estimate the velocities at discrete grids in the velocity model using the least-squares method, and build the final root-mean-square (rms) velocity model by spatial interpolation. The main advantage of our method is that it can generate an appropriate rms velocity model for PSTM in just a few iterations without manual manipulations. In addition, using the fitting curves of the picked events in a range of offsets to estimate the velocity model, which is fitting to a normal moveout correction, can prevent our scheme from the local minima issue. The Sigsbee2B model and a field data set are used to verify the feasibility of our scheme. High-quality velocity model and imaging results are obtained. Compared with the computational cost to generate the CRP gathers, the cost of our scheme can be neglected, and the quality of the initial velocity is not critical.


Geophysics ◽  
2002 ◽  
Vol 67 (4) ◽  
pp. 1258-1269 ◽  
Author(s):  
Junru Jiao ◽  
Paul L. Stoffa ◽  
Mrinal K. Sen ◽  
Roustam K. Seifoullaev

Over the last few years, migration‐velocity analysis methods have been developed for 2‐D and 3‐D models by extending the assumptions and approximations used for rms velocity models. Computational requirements for these analyses have increased dramatically because top‐down layer‐stripping migration is needed to derive interval velocities directly instead of using rms velocities and then converting into interval velocities. We establish exact equations for 1‐D and 2‐D residual velocity analysis in the depth‐plane‐wave domain and use these in an iterative and interactive migration velocity analysis program. The new method updates interval velocities directly in a top‐down residual‐difference correction for all layers after prestack depth migration instead of top‐down layer‐stripping migration followed by residual analysis. This makes the new method a suitable tool for migration velocity analysis, especially for 3‐D surveys. We test the method on synthetic and field data. The field data results show that a reasonable velocity model is obtained and most common image gathers are correctly imaged using no more than four iterations.


Geophysics ◽  
2021 ◽  
pp. 1-68
Author(s):  
Alejandro Cabrales-Vargas ◽  
Rahul Sarkar ◽  
Biondo L. Biondi ◽  
Robert G. Clapp

During linearized waveform inversion, the presence of small inaccuracies in the background subsurface model can lead to unfocused seismic events in the final image. The effect on the amplitude can mislead the interpretation. We present a joint inversion scheme in the model domain of the reflectivity and the background velocity model. The idea is to unify the inversion of the background and the reflectivity model into a single framework instead of treating them as decoupled problems. We show that with this method, we can obtain a better estimate of the reflectivity than that obtained with conventional linearized waveform inversion. Conversely, the background model is improved by the joint inversion with the reflectivity in comparison with wave-equation migration velocity analysis. We perform tests on 2D synthetics and 3D field data that demonstrate both benefits.


Geophysics ◽  
2021 ◽  
pp. 1-50
Author(s):  
German Garabito ◽  
José Silas dos Santos Silva ◽  
Williams Lima

In land seismic data processing, the prestack time migration (PSTM) image remains the standard imaging output, but a reliable migrated image of the subsurface depends on the accuracy of the migration velocity model. We have adopted two new algorithms for time-domain migration velocity analysis based on wavefield attributes of the common-reflection-surface (CRS) stack method. These attributes, extracted from multicoverage data, were successfully applied to build the velocity model in the depth domain through tomographic inversion of the normal-incidence-point (NIP) wave. However, there is no practical and reliable method for determining an accurate and geologically consistent time-migration velocity model from these CRS attributes. We introduce an interactive method to determine the migration velocity model in the time domain based on the application of NIP wave attributes and the CRS stacking operator for diffractions, to generate synthetic diffractions on the reflection events of the zero-offset (ZO) CRS stacked section. In the ZO data with diffractions, the poststack time migration (post-STM) is applied with a set of constant velocities, and the migration velocities are then selected through a focusing analysis of the simulated diffractions. We also introduce an algorithm to automatically calculate the migration velocity model from the CRS attributes picked for the main reflection events in the ZO data. We determine the precision of our diffraction focusing velocity analysis and the automatic velocity calculation algorithms using two synthetic models. We also applied them to real 2D land data with low quality and low fold to estimate the time-domain migration velocity model. The velocity models obtained through our methods were validated by applying them in the Kirchhoff PSTM of real data, in which the velocity model from the diffraction focusing analysis provided significant improvements in the quality of the migrated image compared to the legacy image and to the migrated image obtained using the automatically calculated velocity model.


Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. VE161-VE171 ◽  
Author(s):  
J. Schleicher ◽  
J. C. Costa ◽  
A. Novais

Image-wave propagation or velocity continuation describes the variation of the migrated position of a seismic event as a function of migration velocity. Image-wave propagation in the common-image gather (CIG) domain can be combined with residual-moveout analysis for iterative migration velocity analysis (MVA). Velocity continuation of CIGs leads to a detection of those velocities in which events flatten. Although image-wave continuation is based on the assumption of a constant migration velocity, the procedure can be applied in inhomogeneous media. For this purpose, CIGs obtained by migration with an inhomogeneous macrovelocity model are continued starting from a constant reference velocity. The interpretation of continued CIGs, as if they were obtained from residual migrations, leads to a correction formula that translates residual flattening velocities into absolute time-migration velocities. In this way, the migration velocity model can be improved iteratively until a satisfactory result is reached. With a numerical example, we found that MVA with iterative image continuation applied exclusively to selected CIGs can construct a reasonable migration velocity model from scratch, without the need to build an initial model from a previous conventional normal-moveout/dip-moveout velocity analysis.


Sign in / Sign up

Export Citation Format

Share Document