Accurate diffraction imaging for detecting small-scale geologic discontinuities

Geophysics ◽  
2018 ◽  
Vol 83 (5) ◽  
pp. S447-S457 ◽  
Author(s):  
Peng Lin ◽  
Suping Peng ◽  
Jingtao Zhao ◽  
Xiaoqin Cui ◽  
Wenfeng Du

Seismic diffractions contain valuable information regarding small-scale inhomogeneities or discontinuities, and therefore they can be used for seismic interpretation in the exploitation of hydrocarbon reservoirs. Velocity analysis is a necessary step for accurate imaging of these diffractions. A new method for diffraction velocity analysis and imaging is proposed that uses an improved adaptive minimum variance beamforming technique. This method incorporates the minimum variance, coherence factor, and correlation properties to improve the signal-to-noise ratio and enhance correlations. Our method can make seismic diffractions become better focused in semblance panels, allowing for the optimal migration velocity for diffractions to be accurately picked. Synthetic and field examples demonstrate that the migration velocity for the diffractions can differ from that for the reflections. The results suggest that the diffraction velocity analysis and imaging method is feasible for accurately locating and identifying small-scale discontinuities, which leads to the possibility of using this approach for practical application and seismic interpretation.

Geophysics ◽  
2016 ◽  
Vol 81 (6) ◽  
pp. S399-S408 ◽  
Author(s):  
Jingtao Zhao ◽  
Suping Peng ◽  
Wenfeng Du ◽  
Xiaoting Li

Clarifying and locating small-scale discontinuities or inhomogeneities in the subsurface, such as faults and collapsed columns, plays a vital role in safe coal mining because these discontinuities or inhomogeneities may destroy the continuity of layers and result in dangerous mining accidents. Diffractions carry key information from these objects and therefore can be used for high-resolution imaging. However, diffracted/scattered waves are much weaker than reflected waves and consequently require separation before being imaged. We have developed a Mahalanobis-based diffraction imaging method by modifying the classic Kirchhoff formula with an exponential function to account for the dynamic differences between reflections and diffractions in the shot domain. The imaging method can automatically account for destroying of reflected waves, constructive stacking of diffracted waves, and strengthening of scattered waves. The method can overcome the difficulties in handling Fresnel apertures, and it is suitable for high-resolution imaging because of the consistency of the waveforms in the shot domain. Although the proposed method in principle requires a good migration velocity model for calculating elementary diffraction traveltimes, it is robust to an inaccurate migration velocity model. Two numerical experiments demonstrate the feasibility of the proposed method in removing reflections and highlighting diffractions, and one field application further confirms its efficiency in resolving masked faults and collapsed columns.


Geophysics ◽  
2017 ◽  
Vol 82 (1) ◽  
pp. S51-S59 ◽  
Author(s):  
Dmitrii Merzlikin ◽  
Sergey Fomel

Diffraction imaging aims to emphasize small subsurface objects, such as faults, fracture swarms, and channels. Similar to classical reflection imaging, velocity analysis is crucially important for accurate diffraction imaging. Path-summation migration provides an imaging method that produces an image of the subsurface without picking a velocity model. Previous methods of path-summation imaging involve a discrete summation of the images corresponding to all possible migration velocity distributions within a predefined integration range and thus involve a significant computational cost. We have developed a direct analytical formula for path-summation imaging based on the continuous integration of the images along the velocity dimension, which reduces the cost to that of only two fast Fourier transforms. The analytic approach also enabled automatic migration velocity extraction from diffractions using a double path-summation migration framework. Synthetic and field data examples confirm the efficiency of the proposed techniques.


Geophysics ◽  
2012 ◽  
Vol 77 (6) ◽  
pp. U87-U96 ◽  
Author(s):  
Mamoru Takanashi ◽  
Ilya Tsvankin

One of the most serious problems in anisotropic velocity analysis is the trade-off between anisotropy and lateral heterogeneity, especially if velocity varies on a scale smaller than the maximum offset. We have developed a P-wave MVA (migration velocity analysis) algorithm for transversely isotropic (TI) models that include layers with small-scale lateral heterogeneity. Each layer is described by constant Thomsen parameters [Formula: see text] and [Formula: see text] and the symmetry-direction velocity [Formula: see text] that varies as a quadratic function of the distance along the layer boundaries. For tilted TI media (TTI), the symmetry axis is taken orthogonal to the reflectors. We analyzed the influence of lateral heterogeneity on image gathers obtained after prestack depth migration and found that quadratic lateral velocity variation in the overburden can significantly distort the moveout of the target reflection. Consequently, medium parameters beneath the heterogeneous layer(s) are estimated with substantial error, even when borehole information (e.g., check shots or sonic logs) is available. Because residual moveout in the image gathers is highly sensitive to lateral heterogeneity in the overburden, our algorithm simultaneously inverts for the interval parameters of all layers. Synthetic tests for models with a gently dipping overburden demonstrate that if the vertical profile of the symmetry-direction velocity [Formula: see text] is known at one location, the algorithm can reconstruct the other relevant parameters of TI models. The proposed approach helps increase the robustness of anisotropic velocity model-building and enhance image quality in the presence of small-scale lateral heterogeneity in the overburden.


Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. H1-H12 ◽  
Author(s):  
Hemin Yuan ◽  
Mahboubeh Montazeri ◽  
Majken C. Looms ◽  
Lars Nielsen

Diffractions caused by, e.g., faults, fractures, and small-scale heterogeneity localized near the surface are often used in ground-penetrating radar (GPR) reflection studies to constrain the subsurface velocity distribution using simple hyperbola fitting. Interference with reflected energy makes the identification of diffractions difficult. We have tailored and applied a diffraction imaging method to improve imaging for surface reflection GPR data. Based on a plane-wave destruction algorithm, the method can separate reflections from diffractions. Thereby, a better identification of diffractions facilitates an improved determination of GPR wave velocities and an optimized migration result. We determined the potential of this approach using synthetic and field data, and, for the field study, we also compare the estimated velocity structure with crosshole GPR results. For the field data example, we find that the velocity structure estimated using the diffraction-based process correlates well with results from crosshole GPR velocity estimation. Such improved velocity estimation may have important implications for using surface reflection GPR to map, e.g., porosity for fully saturated media or soil moisture changes in partially saturated media because these physical properties depend on the dielectric permittivity and thereby also the GPR wave velocity.


Geophysics ◽  
2021 ◽  
pp. 1-51
Author(s):  
Chuangjian Li ◽  
Jingtao Zhao ◽  
Suping Peng ◽  
Yanxin Zhou

Diffraction imaging is an important technique for high-resolution imaging because of the close relationship between diffractions and small-scale discontinuities. Therefore, we propose a diffraction imaging method using a mathematical morphological filter (MMF). In a common-image gather (CIG), reflections have an evident energy band associated with the Fresnel zone and stationary point, whereas diffractions can be observed in a wide illumination direction and therefore has no energy band. Based on these phenomena, we analyze the amplitude distributions of the diffractions and reflections, and propose a time-varying structuring element (SE) in the MMF. Based on the time-varying SE, the proposed method can effectively suppress reflections and has the advantage of automatically preserving the diffractions energy near the stationary point. Numerical and field experiments demonstrate the efficient performance of the proposed method in imaging diffractions and obtaining high-resolution information.


2016 ◽  
Vol 4 (4) ◽  
pp. B23-B32 ◽  
Author(s):  
Mohammad Javad Khoshnavaz ◽  
Andrej Bóna ◽  
Muhammad Shahadat Hossain ◽  
Milovan Urosevic ◽  
Kit Chambers

The primary objective of seismic exploration in a hard rock environment is the detection of heterogeneities such as fracture zones, small-scale geobodies, intrusions, and steeply dipping structures that are often associated with mineral deposits. Prospecting in such environments using seismic-reflection methods is more challenging than in sedimentary settings due to lack of continuous reflector beds and predominance of steeply dipping hard rock formations. The heterogeneities and “fractal” aspect of hard rock geologic environment produce considerable scattering of the seismic energy in the form of diffracted waves. These scatterers can be traced back to irregular and often “sharp-shaped” mineral bodies, magmatic intrusions, faults, and complex and heterogeneous shear zones. Due to the natural lack of reflectors and abundant number of diffractors, there are only a few case studies of diffraction imaging in hard rock environments. There are almost no theoretical models or field examples of diffraction imaging in prestack domain. We have filled this gap by applying a 3D prestack diffraction imaging method to image point diffractors. We calculated the diffractivity by computing the semblance of seismic data along diffraction traveltime curves in the prestack domain. The performance of the method is evaluated on a synthetic case and a field seismic data set collected over the Kevitsa mineral deposit in northern Finland. The high-resolution results obtained by the application of prestack diffraction imaging suggest that diffractivity is a robust attribute that can be used in addition to other seismic attributes for the interpretation of seismic data in hard rock environment.


Geophysics ◽  
2019 ◽  
Vol 84 (6) ◽  
pp. S555-S566 ◽  
Author(s):  
Zhengwei Li ◽  
Jianfeng Zhang

We have built a vertical traveltime difference (VTD) gather to image diffractions in the 3D time domain. This significantly improves detection of small-scale faults and heterogeneities in 3D seismic data. The VTD gather is obtained using 3D Kirchhoff prestack time migration based on the traveltime-related inline and crossline dip angles, which is closely related to the 2D dip-angle gather. In VTD gathers, diffraction events exhibit flattening, whereas reflection events have convex upward-sloping shapes. Different from the 2D dip-angle gather, Fresnel zone-related specular reflections are precisely focused on the given regions over all offsets and azimuths, thus leaving more diffraction energy after muting. To image linear diffractors, such as faults in three dimensions, the VTD gather can be extended into two dimensions by adding a dip-azimuth dimension. This makes it possible to correct phases of edge diffractions and detect the orientations of the linear diffractors. The memory requirement of the VTD or VTD plus azimuth gathers is much less than that of the 2D dip-angle gathers. We can store the gathers at each lateral position and then correct the phase and enhance the weak diffractions in 3D cases. Synthetic and field data tests demonstrate the effectiveness of our 3D diffraction imaging method.


Geophysics ◽  
2017 ◽  
Vol 82 (2) ◽  
pp. U25-U35 ◽  
Author(s):  
Luke Decker ◽  
Dmitrii Merzlikin ◽  
Sergey Fomel

We perform seismic diffraction imaging and time-migration velocity analysis by separating diffractions from specular reflections and decomposing them into slope components. We image the slope components using migration velocity extrapolation in time-space-slope coordinates. The extrapolation is described by a convection-type partial differential equation and implemented in a highly parallel manner in the Fourier domain. Synthetic and field data experiments show that the proposed algorithms are able to detect accurate time-migration velocities by measuring the flatness of diffraction events in slope gathers for single- and multiple-offset data.


Geophysics ◽  
2003 ◽  
Vol 68 (1) ◽  
pp. 232-254 ◽  
Author(s):  
Sverre Brandsberg‐Dahl ◽  
Maarten V. de Hoop ◽  
Bjorn Ursin

Common image gathers (CIGs) in the offset and surface azimuth domain are used extensively in migration velocity analysis and amplitude variation with offset (AVO) studies. If the geology is complex and the ray field becomes multipathed, the quality of the CIGs deteriorates. To overcome these problems, the CIGs are generated as a function of scattering angle and azimuth at the image point. The CIGs are generated using an algorithm based on the inverse generalized Radon transform (GRT), stacking only over migration dip angles. Including only dips in the vicinity of the geological dip, or focusing in dip, suppresses artifacts in and results in improved signal‐to‐noise ratio on the CIGs. Migration velocity analysis can be based upon the differential semblance criterion. The analysis~is~then carried out by minimizing a functional of the derivative of the CIGs with respect to horizontal coordinates (offset/azimuth or scattering‐angle/azimuth), but AVO/amplitude variation with angle (AVA) effects will degrade the performance of the velocity analysis. We overcome this problem by computing an inverse GRT modified to compensate for AVA effects. The resulting CIGs can be used for velocity analysis based upon differential semblance, while they can be stacked to produce improved images. The algorithms are developed for inhomogeneous anisotropic elastic media, but they have so far only been tested on imaging‐inversion of PP and PS reflected waves in an isotropic elastic medium. This was done on two synthetic datasets generated by finite‐difference modeling and ocean‐bottom seismic (OBS) data from the Valhall field. We show that by performing the imaging of the real OBS data in the angle domain, it is possible to construct a well‐focused PP image of the Valhall reservoir directly beneath the “gas cloud” in the overburden.


2020 ◽  
Vol 10 ◽  
pp. 4-11
Author(s):  
Ta Quang Minh ◽  
Nguyen Danh Lam ◽  
Duong Hung Cuong ◽  
Pham Van Tuyen ◽  
Mai Thi Lua ◽  
...  

Improvement to the image of fractured granite basements is among the most sought-after goals for processing seismic data in Cuu Long basin, the most proliferous petroleum basin. Unlike a clear layering structure of the sediment, fuzzy images of the granite basement are often the source of confusion for interpreters to identify which structures are presented inside it. In such a low signal-to-noise ratio (SNR) environment, extracting geological information such as fault systems and fracture becomes challenging. In this study, diffraction imaging is employed in an effort to identify and enhance the fault system inside the basement. The comparison of the study result with various standard post-stack attribute approaches shows the effectiveness of the diffraction imaging method.


Sign in / Sign up

Export Citation Format

Share Document