scholarly journals An alternative formula for approximate extended Born inversion

Geophysics ◽  
2017 ◽  
Vol 82 (1) ◽  
pp. S1-S8 ◽  
Author(s):  
Jie Hou ◽  
William W. Symes

Various modifications of reverse time migration (RTM) provide asymptotic inverses to the subsurface offset extended Born modeling operator for constant-density acoustics. These approximate inverses have the same quality (asymptotic accuracy) as do generalized Radon transform pseudoinverses, but they can be computed without any ray tracing whatsoever. We have developed an approximate inverse of this type whose additional computational cost, above that of subsurface offset extended RTM, is negligible.

Geophysics ◽  
2018 ◽  
Vol 83 (5) ◽  
pp. S399-S408 ◽  
Author(s):  
Yunyue Elita Li ◽  
Yue Du ◽  
Jizhong Yang ◽  
Arthur Cheng ◽  
Xinding Fang

Elastic wave imaging has been a significant challenge in the exploration industry due to the complexities in wave physics and numerical implementation. We have separated the governing equations for P- and S-wave propagation without the assumptions of homogeneous Lamé parameters to capture the mode conversion between the two body waves in an isotropic, constant-density medium. The resulting set of two coupled second-order equations for P- and S-potentials clearly demonstrates that mode conversion only occurs at the discontinuities of the shear modulus. Applying the Born approximation to the new equations, we derive the PP, PS, SP, and SS imaging conditions from the first gradients of waveform matching objective functions. The resulting images are consistent with the physical perturbations of the elastic parameters, and, hence, they are automatically free of the polarity reversal artifacts in the converted images. When implementing elastic reverse time migration (RTM), we find that scalar wave equations can be used to back propagate the recorded P-potential, as well as individual components in the vector field of the S-potential. Compared with conventional elastic RTM, the proposed elastic RTM implementation using acoustic propagators not only simplifies the imaging condition, it but also reduces the computational cost and the artifacts in the images. We have determined the accuracy of our method using 2D and 3D numerical examples.


Geophysics ◽  
2021 ◽  
pp. 1-78
Author(s):  
Zhiyuan Li ◽  
Youshan Liu ◽  
Guanghe Liang ◽  
Guoqiang Xue ◽  
Runjie Wang

The separation of P- and S-wavefields is considered to be an effective approach for eliminating wave-mode cross-talk in elastic reverse-time migration. At present, the Helmholtz decomposition method is widely used for isotropic media. However, it tends to change the amplitudes and phases of the separated wavefields compared with the original wavefields. Other methods used to obtain pure P- and S-wavefields include the application of the elastic wave equations of the decoupled wavefields. To achieve a high computational accuracy, staggered-grid finite-difference (FD) schemes are usually used to numerically solve the equations by introducing an additional stress variable. However, the computational cost of this method is high because a conventional hybrid wavefield (P- and S-wavefields are mixed together) simulation must be created before the P- and S-wavefields can be calculated. We developed the first-order particle velocity equations to reduce the computational cost. The equations can describe four types of particle velocity wavefields: the vector P-wavefield, the scalar P-wavefield, the vector S-wavefield, and the vector S-wavefield rotated in the direction of the curl factor. Without introducing the stress variable, only the four types of particle velocity variables are used to construct the staggered-grid FD schemes, so the computational cost is reduced. We also present an algorithm to calculate the P and S propagation vectors using the four particle velocities, which is simpler than the Poynting vector. Finally, we applied the velocity equations and propagation vectors to elastic reverse-time migration and angle-domain common-image gather computations. These numerical examples illustrate the efficiency of the proposed methods.


Geophysics ◽  
2021 ◽  
pp. 1-73
Author(s):  
Milad Farshad ◽  
Hervé Chauris

Elastic least-squares reverse time migration is the state-of-the-art linear imaging technique to retrieve high-resolution quantitative subsurface images. A successful application requires many migration/modeling cycles. To accelerate the convergence rate, various pseudoinverse Born operators have been proposed, providing quantitative results within a single iteration, while having roughly the same computational cost as reverse time migration. However, these are based on the acoustic approximation, leading to possible inaccurate amplitude predictions as well as the ignorance of S-wave effects. To solve this problem, we extend the pseudoinverse Born operator from acoustic to elastic media to account for the elastic amplitudes of PP reflections and provide an estimate of physical density, P- and S-wave impedance models. We restrict the extension to marine environment, with the recording of pressure waves at the receiver positions. Firstly, we replace the acoustic Green's functions by their elastic version, without modifying the structure of the original pseudoinverse Born operator. We then apply a Radon transform to the results of the first step to calculate the angle-dependent response. Finally, we simultaneously invert for the physical parameters using a weighted least-squares method. Through numerical experiments, we first illustrate the consequences of acoustic approximation on elastic data, leading to inaccurate parameter inversion as well as to artificial reflector inclusion. Then we demonstrate that our method can simultaneously invert for elastic parameters in the presence of complex uncorrelated structures, inaccurate background models, and Gaussian noisy data.


Geophysics ◽  
2020 ◽  
Vol 85 (1) ◽  
pp. S47-S64
Author(s):  
Yang Zhao ◽  
Tao Liu ◽  
Xueyi Jia ◽  
Hongwei Liu ◽  
Zhiguang Xue ◽  
...  

Angle-domain common-image gathers (ADCIGs) from elastic reverse time migration (ERTM) are valuable tools for seismic elastic velocity estimation. Traditional ADCIGs are based on the concept of common-offset domains, but common-shot domain implementations are often favored for computational cost considerations. Surface-offset gathers (SOGs) built from common-offset migration may serve as an alternative to the common-shot ADCIGs. We have developed a theoretical kinematic framework between these two domains, and we determined that the common SOG gives an alternative measurement of kinematic correctness in the presence of incorrect velocity. Specifically, we exploit analytical expressions for the image misposition between these two domains, with respect to the traveltime perturbation caused by velocity errors. Four formulations of the PP and PS residual moveout functions are derived and provide insightful information of the velocity error, angle, and PS velocity ratio contained in ERTM gathers. The analytical solutions are validated with homogeneous examples with a series of varied parameters. We found that the SOGs may perform in the way of simplicity and linearity as an alternative to the common-shot migration. To make a full comparison with ADCIGs, we have developed a cost-effective workflow of ERTM SOGs. A fast vector P- and S-wave decomposition can be obtained via spatial gradients at selected time steps. A selected ERTM imaging condition is then modified in which the migration is done by offset groups between each source and receiver pair for each P- and S-wave decomposition. Two synthetic (marine and land) examples are used to demonstrate the feasibility of our methods.


Geophysics ◽  
2020 ◽  
pp. 1-61
Author(s):  
Janaki Vamaraju ◽  
Jeremy Vila ◽  
Mauricio Araya-Polo ◽  
Debanjan Datta ◽  
Mohamed Sidahmed ◽  
...  

Migration techniques are an integral part of seismic imaging workflows. Least-squares reverse time migration (LSRTM) overcomes some of the shortcomings of conventional migration algorithms by compensating for illumination and removing sampling artifacts to increase spatial resolution. However, the computational cost associated with iterative LSRTM is high and convergence can be slow in complex media. We implement pre-stack LSRTM in a deep learning framework and adopt strategies from the data science domain to accelerate convergence. The proposed hybrid framework leverages the existing physics-based models and machine learning optimizers to achieve better and cheaper solutions. Using a time-domain formulation, we show that mini-batch gradients can reduce the computation cost by using a subset of total shots for each iteration. Mini-batch approach does not only reduce source cross-talk but also is less memory intensive. Combining mini-batch gradients with deep learning optimizers and loss functions can improve the efficiency of LSRTM. Deep learning optimizers such as the adaptive moment estimation are generally well suited for noisy and sparse data. We compare different optimizers and demonstrate their efficacy in mitigating migration artifacts. To accelerate the inversion, we adopt the regularised Huber loss function in conjunction. We apply these techniques to 2D Marmousi and 3D SEG/EAGE salt models and show improvements over conventional LSRTM baselines. The proposed approach achieves higher spatial resolution in less computation time measured by various qualitative and quantitative evaluation metrics.


Geophysics ◽  
2021 ◽  
pp. 1-67
Author(s):  
Yuzhu Liu ◽  
Weigang Liu ◽  
Zheng Wu ◽  
Jizhong Yang

Reverse time migration (RTM) has been widely used for imaging complex subsurface structures in oil and gas exploration. However, because only the adjoint of the forward Born modeling operator is applied to the seismic data in RTM, the output migration profile is biased in terms of the amplitude. To help partially balance the amplitude performance, the RTM image can be preconditioned with the inverse of the diagonal of the Hessian operator. Yet, existing preconditioning methods do not correctly consider the receiver-side effects, assuming that the receiver coverage is infinite or the velocity model is constant. We therefore provide a comparative study aiming to give a clearer understanding on the importance of incorporating the receiver-side effects by developing a frequency-domain scattering-integral reverse time migration (SI-RTM). In the proposed SI-RTM, the diagonal of the Hessian operator is explicitly computed in its exact formulation, and the source-side wavefield and receiver-side Green’s functions are obtained by solving the two-way wave equation. The computational cost is relatively affordable when compared with the more expensive least-squares RTM. In the comparative counterpart, the diagonal of the Hessian operator is approximated by the source-side illumination. We perform two synthetic numerical examples using an overthrust model and a complex reservoir model; the final migration images were significantly improved when the receiver-side effects were accurately considered. A third application of SI-RTM on one field data set acquired from the East China Sea further demonstrates the importance of incorporating the receiver-side effects in normalizing the RTM image. Findings of this study are expected to provide a theoretical basis for improving the ability of RTM imaging of subsurface structures, thereby critically advancing the application of geophysical techniques for imaging complex environments.


Geophysics ◽  
2009 ◽  
Vol 74 (6) ◽  
pp. WCA153-WCA158 ◽  
Author(s):  
Faqi Liu ◽  
Guanquan Zhang ◽  
Scott A. Morton ◽  
Jacques P. Leveille

The acoustic wave equation has been widely used for the modeling and reverse time migration of seismic data. Numerical implementation of this equation via finite-difference techniques has established itself as a valuable approach and has long been a favored choice in the industry. To ensure quality results, accurate approximations are required for spatial and time derivatives. Traditionally, they are achieved numerically by using either relatively very fine computation grids or very long finite-difference operators. Otherwise, the numerical error, known as numerical dispersion, is present in the data and contaminates the signals. However, either approach will result in a considerable increase in the computational cost. A simple and computationally low-cost modification to the standard acoustic wave equation is presented to suppress numerical dispersion. This dispersion attenuator is one analogy of the antialiasing operator widely applied in Kirchhoff migration. When the new wave equation is solved numerically using finite-difference schemes, numerical dispersion in the original wave equation is attenuated significantly, leading to a much more accurate finite-difference scheme with little additional computational cost. Numerical tests on both synthetic and field data sets in both two and three dimensions demonstrate that the optimized wave equation dramatically improves the image quality by successfully attenuating dispersive noise. The adaptive application of this new wave equation only increases the computational cost slightly.


Geophysics ◽  
2017 ◽  
Vol 82 (5) ◽  
pp. T225-T235 ◽  
Author(s):  
Leandro Di Bartolo ◽  
Leandro Lopes ◽  
Luis Juracy Rangel Lemos

Pseudoacoustic algorithms are very fast in comparison with full elastic ones for vertical transversely isotropic (VTI) modeling, so they are suitable for many applications, especially reverse time migration. Finite differences using simple grids are commonly used to solve pseudoacoustic equations. We have developed and implemented general high-order 3D pseudoacoustic transversely isotropic formulations. The focus is the development of staggered-grid finite-difference algorithms, known for their superior numerical properties. The staggered-grid schemes based on first-order velocity-stress wave equations are developed in detail as well as schemes based on direct application to second-order stress equations. This last case uses the recently presented equivalent staggered-grid theory, resulting in a staggered-grid scheme that overcomes the problem of large memory requirement. Two examples are presented: a 3D simulation and a prestack reverse time migration application, and we perform a numerical analysis regarding computational cost and precision. The errors of the new schemes are smaller than the existing nonstaggered-grid schemes. In comparison with existing staggered-grid schemes, they require 25% less memory and only have slightly greater computational cost.


Geophysics ◽  
2016 ◽  
Vol 81 (2) ◽  
pp. KS51-KS60 ◽  
Author(s):  
Nori Nakata ◽  
Gregory C. Beroza

Time reversal is a powerful tool used to image directly the location and mechanism of passive seismic sources. This technique assumes seismic velocities in the medium and propagates time-reversed observations of ground motion at each receiver location. Assuming an accurate velocity model and adequate array aperture, the waves will focus at the source location. Because we do not know the location and the origin time a priori, we need to scan the entire 4D image (3D in space and 1D in time) to localize the source, which makes time-reversal imaging computationally demanding. We have developed a new approach of time-reversal imaging that reduces the computational cost and the scanning dimensions from 4D to 3D (no time) and increases the spatial resolution of the source image. We first individually extrapolate wavefields at each receiver, and then we crosscorrelate these wavefields (the product in the frequency domain: geometric mean). This crosscorrelation creates another imaging condition, and focusing of the seismic wavefields occurs at the zero time lag of the correlation provided the velocity model is sufficiently accurate. Due to the analogy to the active-shot reverse time migration (RTM), we refer to this technique as the geometric-mean RTM or GmRTM. In addition to reducing the dimension from 4D to 3D compared with conventional time-reversal imaging, the crosscorrelation effectively suppresses the side lobes and yields a spatially high-resolution image of seismic sources. The GmRTM is robust for random and coherent noise because crosscorrelation enhances signal and suppresses noise. An added benefit is that, in contrast to conventional time-reversal imaging, GmRTM has the potential to be used to retrieve velocity information by analyzing time and/or space lags of crosscorrelation, which is similar to what is done in active-source imaging.


Geophysics ◽  
2016 ◽  
Vol 81 (4) ◽  
pp. S261-S269 ◽  
Author(s):  
Mahesh Kalita ◽  
Tariq Alkhalifah

Common-image gathers (CIGs) are extensively used in migration velocity analysis. Any defocused events in the subsurface offset domain or equivalently nonflat events in angle-domain CIGs are accounted for revising the migration velocities. However, CIGs from wave-equation methods such as reverse time migration are often expensive to compute, especially in 3D. Using the excitation amplitude imaging condition that simplifies the forward-propagated source wavefield, we have managed to extract extended images for space and time lags in conjunction with prestack reverse time migration. The extended images tend to be cleaner, and the memory cost/disk storage is extensively reduced because we do not need to store the source wavefield. In addition, by avoiding the crosscorrelation calculation, we reduce the computational cost. These features are demonstrated on a linear [Formula: see text] model, a two-layer velocity model, and the Marmousi model.


Sign in / Sign up

Export Citation Format

Share Document