Surface wave surveying for near-surface site characterization in the East San Francisco Bay Area, California

2016 ◽  
Vol 4 (4) ◽  
pp. SQ59-SQ69 ◽  
Author(s):  
Mitchell Craig ◽  
Koichi Hayashi

Seismic surface wave methods are effective tools for estimating S-wave velocity in urban areas for near-surface site characterization and geologic hazard assessment. A surface wave survey can provide quantitative site-specific measurement of physical properties needed for the design of earthquake-resistant structures. We successfully used a combined active and passive seismic surface wave method to estimate the S-wave velocity in the upper 30 m at sites with a range of geologic conditions. At five of the six sites, multichannel analysis of surface waves (MASW) and microtremor array method (MAM) methods were used. The MAM method could not be used at one site due to insufficient ambient noise. Data from the active method (MASW) contained higher frequencies that contributed to higher resolution of the near-surface zone, whereas passive data (MAM) contained lower frequencies that provided deeper penetration. Phase velocities from the two methods were in good agreement in the frequency range where they overlapped. Surface wave dispersion curves from the two methods were used to prepare an initial velocity model, and a nonlinear inversion was performed to obtain an improved velocity-depth profile. The use of a multimethod data set provided greater confidence in velocity measurements. The six sites of this study may be classified as belonging to two main groups based on S-wave velocities and geologic materials. Two sites are located in the East Bay Hills on Mesozoic bedrock, and four sites are located on Holocene sedimentary units. The highest [Formula: see text] was [Formula: see text] (class C), at a site with fractured and weathered bedrock exposed in a geotechnical trench at 1–2 m depth. The four sites on Holocene sedimentary units have [Formula: see text] values ranging from 207 to [Formula: see text] (class D).

2019 ◽  
Vol 218 (3) ◽  
pp. 1873-1891 ◽  
Author(s):  
Farbod Khosro Anjom ◽  
Daniela Teodor ◽  
Cesare Comina ◽  
Romain Brossier ◽  
Jean Virieux ◽  
...  

SUMMARY The analysis of surface wave dispersion curves (DCs) is widely used for near-surface S-wave velocity (VS) reconstruction. However, a comprehensive characterization of the near-surface requires also the estimation of P-wave velocity (VP). We focus on the estimation of both VS and VP models from surface waves using a direct data transform approach. We estimate a relationship between the wavelength of the fundamental mode of surface waves and the investigation depth and we use it to directly transform the DCs into VS and VP models in laterally varying sites. We apply the workflow to a real data set acquired on a known test site. The accuracy of such reconstruction is validated by a waveform comparison between field data and synthetic data obtained by performing elastic numerical simulations on the estimated VP and VS models. The uncertainties on the estimated velocity models are also computed.


2021 ◽  
Vol 40 (8) ◽  
pp. 567-575
Author(s):  
Myrto Papadopoulou ◽  
Farbod Khosro Anjom ◽  
Mohammad Karim Karimpour ◽  
Valentina Laura Socco

Surface-wave (SW) tomography is a technique that has been widely used in the field of seismology. It can provide higher resolution relative to the classical multichannel SW processing and inversion schemes that are usually adopted for near-surface applications. Nevertheless, the method is rarely used in this context, mainly due to the long processing times needed to pick the dispersion curves as well as the inability of the two-station processing to discriminate between higher SW modes. To make it efficient and to retrieve pseudo-2D/3D S-wave velocity (VS) and P-wave velocity (VP) models in a fast and convenient way, we develop a fully data-driven two-station dispersion curve estimation, which achieves dense spatial coverage without the involvement of an operator. To handle higher SW modes, we apply a dedicated time-windowing algorithm to isolate and pick the different modes. A multimodal tomographic inversion is applied to estimate a VS model. The VS model is then converted to a VP model with the Poisson's ratio estimated through the wavelength-depth method. We apply the method to a 2D seismic exploration data set acquired at a mining site, where strong lateral heterogeneity is expected, and to a 3D pilot data set, recorded with state-of-the-art acquisition technology. We compare the results with the ones retrieved from classical multichannel analysis.


Geophysics ◽  
2017 ◽  
Vol 82 (6) ◽  
pp. EN99-EN108 ◽  
Author(s):  
Zongbo Xu ◽  
T. Dylan Mikesell ◽  
Jianghai Xia ◽  
Feng Cheng

Passive-source seismic-noise-based surface-wave methods are now routinely used to investigate the near-surface geology in urban environments. These methods estimate the S-wave velocity of the near surface, and two methods that use linear recording arrays are seismic interferometry (SI) and refraction microtremor (ReMi). These two methods process noise data differently and thus can yield different estimates of the surface-wave dispersion, the data used to estimate the S-wave velocity. We have systematically compared these two methods using synthetic data with different noise source distributions. We arrange sensors in a linear survey grid, which is conveniently used in urban investigations (e.g., along roads). We find that both methods fail to correctly determine the low-frequency dispersion characteristics when outline noise sources become stronger than inline noise sources. We also identify an artifact in the ReMi method and theoretically explain the origin of this artifact. We determine that SI combined with array-based analysis of surface waves is the more accurate method to estimate surface-wave phase velocities because SI separates surface waves propagating in different directions. Finally, we find a solution to eliminate the ReMi artifact that involves the combination of SI and the [Formula: see text]-[Formula: see text] transform, the array processing method that underlies the ReMi method.


2017 ◽  
Author(s):  
Valentina Socco ◽  
Farbod Khosro Anjom ◽  
Cesare Comina ◽  
Daniela Teodor

Geophysics ◽  
1993 ◽  
Vol 58 (5) ◽  
pp. 713-719 ◽  
Author(s):  
Ghassan I. Al‐Eqabi ◽  
Robert B. Herrmann

The objective of this study is to demonstrate that a laterally varying shallow S‐wave structure, derived from the dispersion of the ground roll, can explain observed lateral variations in the direct S‐wave arrival. The data set consists of multichannel seismic refraction data from a USGS-GSC survey in the state of Maine and the province of Quebec. These data exhibit significant lateral changes in the moveout of the ground‐roll as well as the S‐wave first arrivals. A sequence of surface‐wave processing steps are used to obtain a final laterally varying S‐wave velocity model. These steps include visual examination of the data, stacking, waveform inversion of selected traces, phase velocity adjustment by crosscorrelation, and phase velocity inversion. These models are used to predict the S‐wave first arrivals by using two‐dimensional (2D) ray tracing techniques. Observed and calculated S‐wave arrivals match well over 30 km long data paths, where lateral variations in the S‐wave velocity in the upper 1–2 km are as much as ±8 percent. The modeled correlation between the lateral variations in the ground‐roll and S‐wave arrival demonstrates that a laterally varying structure can be constrained by using surface‐wave data. The application of this technique to data from shorter spreads and shallower depths is discussed.


Geophysics ◽  
2016 ◽  
Vol 81 (1) ◽  
pp. R1-R14 ◽  
Author(s):  
Yudi Pan ◽  
Jianghai Xia ◽  
Yixian Xu ◽  
Lingli Gao ◽  
Zongbo Xu

High-frequency surface-wave techniques are widely used to estimate S-wave velocity of near-surface materials. Surface-wave methods based on inversions of dispersion curves are only suitable to laterally homogeneous or smoothly laterally varying heterogeneous earth models due to the layered-model assumption during calculation of dispersion curves. Waveform inversion directly fits the waveform of observed data, and it can be applied to any kinds of earth models. We have used the Love-wave waveform inversion in the time domain to estimate near-surface S-wave velocity. We used the finite-difference method as the forward modeling method. The source effect was removed by the deconvolution technique, which made our method independent of the source wavelet. We defined the difference between the deconvolved observed and calculated waveform as the misfit function. We divided the model into different sizes of blocks depending on the resolution of the Love waves, and we updated the S-wave velocity of each block via a conjugate gradient algorithm. We used two synthetic models to test the effectiveness of our method. A real-world case verified the validity of our method.


Sign in / Sign up

Export Citation Format

Share Document