Geostatistical inversion of prestack seismic data for the joint estimation of facies and impedances using stochastic sampling from Gaussian mixture posterior distributions

Geophysics ◽  
2017 ◽  
Vol 82 (4) ◽  
pp. M55-M65 ◽  
Author(s):  
Xiaozheng Lang ◽  
Dario Grana

We have developed a seismic inversion method for the joint estimation of facies and elastic properties from prestack seismic data based on a geostatistical approach. The objectives of our inversion methodology are to sample from the posterior distribution of seismic properties and to simultaneously classify the lithology conditioned by seismic data. The inversion algorithm is a sequential Gaussian mixture inversion based on Bayesian linearized amplitude variation with offset inverse theory and sequential geostatistical simulations. The stochastic approach to the inversion allows generating multiple elastic models that match the seismic data. To mathematically represent the multimodal behavior of elastic properties due to their variations within different lithologies, we adopt a Gaussian mixture distribution for the prior model of the elastic properties and we use the prior probability of the facies as weights of the Gaussian components of the mixture. The solution of the inverse problem is achieved by deriving the explicit analytical expression of the posterior distribution of the elastic properties and facies and by sampling from this distribution according to a spatial correlation model. The inversion methodology has been validated using well logs and synthetic seismic data with different noise levels, and it is then applied to a real 3D seismic data set in North Sea.

Geophysics ◽  
2010 ◽  
Vol 75 (3) ◽  
pp. O21-O37 ◽  
Author(s):  
Dario Grana ◽  
Ernesto Della Rossa

A joint estimation of petrophysical properties is proposed that combines statistical rock physics and Bayesian seismic inversion. Because elastic attributes are correlated with petrophysical variables (effective porosity, clay content, and water saturation) and this physical link is associated with uncertainties, the petrophysical-properties estimation from seismic data can be seen as a Bayesian inversion problem. The purpose of this work was to develop a strategy for estimating the probability distributions of petrophysical parameters and litho-fluid classes from seismics. Estimation of reservoir properties and the associated uncertainty was performed in three steps: linearized seismic inversion to estimate the probabilities of elastic parameters, probabilistic upscaling to include the scale-changes effect, and petrophysical inversion to estimate the probabilities of petrophysical variables andlitho-fluid classes. Rock-physics equations provide the linkbetween reservoir properties and velocities, and linearized seismic modeling connects velocities and density to seismic amplitude. A full Bayesian approach was adopted to propagate uncertainty from seismics to petrophysics in an integrated framework that takes into account different sources of uncertainty: heterogeneity of the real data, approximation of physical models, measurement errors, and scale changes. The method has been tested, as a feasibility step, on real well data and synthetic seismic data to show reliable propagation of the uncertainty through the three different steps and to compare two statistical approaches: parametric and nonparametric. Application to a real reservoir study (including data from two wells and partially stacked seismic volumes) has provided as a main result the probability densities of petrophysical properties and litho-fluid classes. It demonstrated the applicability of the proposed inversion method.


Geophysics ◽  
2003 ◽  
Vol 68 (1) ◽  
pp. 185-198 ◽  
Author(s):  
Arild Buland ◽  
Henning Omre

A new linearized AVO inversion technique is developed in a Bayesian framework. The objective is to obtain posterior distributions for P‐wave velocity, S‐wave velocity, and density. Distributions for other elastic parameters can also be assessed—for example, acoustic impedance, shear impedance, and P‐wave to S‐wave velocity ratio. The inversion algorithm is based on the convolutional model and a linearized weak contrast approximation of the Zoeppritz equation. The solution is represented by a Gaussian posterior distribution with explicit expressions for the posterior expectation and covariance; hence, exact prediction intervals for the inverted parameters can be computed under the specified model. The explicit analytical form of the posterior distribution provides a computationally fast inversion method. Tests on synthetic data show that all inverted parameters were almost perfectly retrieved when the noise approached zero. With realistic noise levels, acoustic impedance was the best determined parameter, while the inversion provided practically no information about the density. The inversion algorithm has also been tested on a real 3‐D data set from the Sleipner field. The results show good agreement with well logs, but the uncertainty is high.


Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. R463-R476 ◽  
Author(s):  
Leandro Passos de Figueiredo ◽  
Dario Grana ◽  
Mauro Roisenberg ◽  
Bruno B. Rodrigues

We have developed a Markov chain Monte Carlo (MCMC) method for joint inversion of seismic data for the prediction of facies and elastic properties. The solution of the inverse problem is defined by the Bayesian posterior distribution of the properties of interest. The prior distribution is a Gaussian mixture model, and each component is associated to a potential configuration of the facies sequence along the seismic trace. The low frequency is incorporated by using facies-dependent depositional trend models for the prior means of the elastic properties in each facies. The posterior distribution is also a Gaussian mixture, for which the Gaussian component can be analytically computed. However, due to the high number of components of the mixture, i.e., the large number of facies configurations, the computation of the full posterior distribution is impractical. Our Gaussian mixture MCMC method allows for the calculation of the full posterior distribution by sampling the facies configurations according to the acceptance/rejection probability. The novelty of the method is the use of an MCMC framework with multimodal distributions for the description of the model properties and the facies along the entire seismic trace. Our method is tested on synthetic seismic data, applied to real seismic data, and validated using a well test.


Geophysics ◽  
2020 ◽  
pp. 1-70
Author(s):  
Mattia ALEARDI ◽  
Alessandro Salusti

We develop a pre-stack inversion algorithm that combines a Discrete Cosine Transform (DCT) reparameterization of data and model spaces with a Convolutional Neural Network (CNN). The CNN is trained to predict the mapping between the DCT-transformed seismic data and the DCT-transformed 2-D elastic model. A convolutional forward modeling based on the full Zoeppritz equations constitutes the link between the elastic properties and the seismic data. The direct sequential co-simulation algorithm with joint probability distribution is used to generate the training and validation datasets under the assumption of a stationary non-parametric prior and a Gaussian variogram model for the elastic properties. The DCT is an orthogonal transformation that is here used as an additional feature extraction technique that reduces the number of unknown parameters in the inversion and the dimensionality of the input and output of the network. The DCT reparameterization also acts as a regularization operator in the model space and allows for the preservation of the lateral and vertical continuity of the elastic properties in the recovered solution. We also implement a Monte Carlo simulation strategy that propagates onto the estimated elastic model the uncertainties related to both noise contamination and network approximation. We focus on synthetic inversions on a realistic subsurface model that mimics a real gas-saturated reservoir hosted in a turbiditic sequence. We compare the outcomes of the implemented algorithm with those provided by a popular linear inversion approach and we also assess the robustness of the CNN inversion to errors in the estimated source wavelet and to erroneous assumptions about the noise statistic. Our tests confirm the applicability of the proposed approach, opening the possibility of estimating the subsurface elastic parameters and the associated uncertainties in near real-time while satisfactorily preserving the assumed spatial variability and the statistical properties of the elastic parameters.


Geophysics ◽  
2018 ◽  
Vol 83 (5) ◽  
pp. B281-B287 ◽  
Author(s):  
Xiwu Liu ◽  
Fengxia Gao ◽  
Yuanyin Zhang ◽  
Ying Rao ◽  
Yanghua Wang

We developed a case study of seismic resolution enhancement for shale-oil reservoirs in the Q Depression, China, featured by rhythmic bedding. We proposed an innovative method for resolution enhancement, called the full-band extension method. We implemented this method in three consecutive steps: wavelet extraction, filter construction, and data filtering. First, we extracted a constant-phase wavelet from the entire seismic data set. Then, we constructed the full-band extension filter in the frequency domain using the least-squares inversion method. Finally, we applied the band extension filter to the entire seismic data set. We determined that this full-band extension method, with a stretched frequency band from 7–70 to 2–90 Hz, may significantly enhance 3D seismic resolution and distinguish reflection events of rhythmite groups in shale-oil reservoirs.


2019 ◽  
Vol 24 (2) ◽  
pp. 201-214
Author(s):  
Rashed Poormirzaee ◽  
Siamak Sarmady ◽  
Yusuf Sharghi

Similar to any other geophysical method, seismic refraction method faces non-uniqueness in the estimation of model parameters. Recently, different nonlinear seismic processing techniques have been introduced, particularly for seismic inversion. One of the recently developed metaheuristic algorithms is bat optimization algorithm (BA). Standard BA is usually quick at the exploitation of the solution, while its exploration ability is relatively poor. In order to improve exploration ability of BA, in the current study, a hybrid metaheuristic algorithm by inclusion a mutation operator into BA, so-called mutation based bat algorithm (MBA), is introduced to inversion of seismic refraction data. The efficiency and stability of the proposed inversion algorithm were tested on different synthetic cases. Finally, the MBA inversion algorithm was applied to a real dataset acquired from Leylanchay dam site at East-Azerbaijan province, Iran, to determine alluvium depth. Then, the performance of MBA on both synthetic and real datasets was compared with standard BA. Moreover, the dataset was further processed following a tomographic approach and the results were compared to the results of the proposed MBA inversion method. In general, the MBA inversion results were superior to standard BA inversion and results of MBA were in good agreement with available boreholes data and geological sections at the dam site. The analysis of the seismic data showed that the studied site comprises three distinct layers: a saturated alluvial, an unsaturated alluvial, and a dolomite bedrock. The measured seismic velocity across the dam site has a range of 400 to 3,500 m/s, with alluvium thickness ranging from 5 to 19 m. Findings showed that the proposed metaheuristic inversion framework is a simple, fast, and powerful tool for seismic data processing.


Geophysics ◽  
2020 ◽  
Vol 85 (4) ◽  
pp. MR213-MR233 ◽  
Author(s):  
Muhammad Atif Nawaz ◽  
Andrew Curtis ◽  
Mohammad Sadegh Shahraeeni ◽  
Constantin Gerea

Seismic attributes (derived quantities) such as P-wave and S-wave impedances and P-wave to S-wave velocity ratios may be used to classify subsurface volume of rock into geologic facies (distinct lithology-fluid classes) using pattern recognition methods. Seismic attributes may also be used to estimate subsurface petrophysical rock properties such as porosity, mineral composition, and pore-fluid saturations. Both of these estimation processes are conventionally carried out independent of each other and involve considerable uncertainties, which may be reduced significantly by a joint estimation process. We have developed an efficient probabilistic inversion method for joint estimation of geologic facies and petrophysical rock properties. Seismic attributes and petrophysical properties are jointly modeled using a Gaussian mixture distribution whose parameters are initialized by unsupervised learning using well-log data. Rock-physics models may be used in our method to augment the training data if the existing well data are limited; however, this is not required if sufficient well data are available. The inverse problem is solved using the Bayesian paradigm that models uncertainties in the form of probability distributions. Probabilistic inference is performed using variational optimization, which is a computationally efficient deterministic alternative to the commonly used sampling-based stochastic inference methods. With the help of a real data application from the North Sea, we find that our method is computationally efficient, honors expected spatial correlations of geologic facies, allows reliable detection of convergence, and provides full probabilistic results without stochastic sampling of the posterior distribution.


Geophysics ◽  
1995 ◽  
Vol 60 (3) ◽  
pp. 796-809 ◽  
Author(s):  
Zhong‐Min Song ◽  
Paul R. Williamson ◽  
R. Gerhard Pratt

In full‐wave inversion of seismic data in complex media it is desirable to use finite differences or finite elements for the forward modeling, but such methods are still prohibitively expensive when implemented in 3-D. Full‐wave 2-D inversion schemes are of limited utility even in 2-D media because they do not model 3-D dynamics correctly. Many seismic experiments effectively assume that the geology varies in two dimensions only but generate 3-D (point source) wavefields; that is, they are “two‐and‐one‐half‐dimensional” (2.5-D), and this configuration can be exploited to model 3-D propagation efficiently in such media. We propose a frequency domain full‐wave inversion algorithm which uses a 2.5-D finite difference forward modeling method. The calculated seismogram can be compared directly with real data, which allows the inversion to be iterated. We use a descents‐related method to minimize a least‐squares measure of the wavefield mismatch at the receivers. The acute nonlinearity caused by phase‐wrapping, which corresponds to time‐domain cycle‐skipping, is avoided by the strategy of either starting the inversion using a low frequency component of the data or constructing a starting model using traveltime tomography. The inversion proceeds by stages at successively higher frequencies across the observed bandwidth. The frequency domain is particularly efficient for crosshole configurations and also allows easy incorporation of attenuation, via complex velocities, in both forward modeling and inversion. This also requires the introduction of complex source amplitudes into the inversion as additional unknowns. Synthetic studies show that the iterative scheme enables us to achieve the theoretical maximum resolution for the velocity reconstruction and that strongly attenuative zones can be recovered with reasonable accuracy. Preliminary results from the application of the method to a real data set are also encouraging.


Geophysics ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. MR187-MR198 ◽  
Author(s):  
Yi Shen ◽  
Jack Dvorkin ◽  
Yunyue Li

Our goal is to accurately estimate attenuation from seismic data using model regularization in the seismic inversion workflow. One way to achieve this goal is by finding an analytical relation linking [Formula: see text] to [Formula: see text]. We derive an approximate closed-form solution relating [Formula: see text] to [Formula: see text] using rock-physics modeling. This relation is tested on well data from a clean clastic gas reservoir, of which the [Formula: see text] values are computed from the log data. Next, we create a 2D synthetic gas-reservoir section populated with [Formula: see text] and [Formula: see text] and generate respective synthetic seismograms. Now, the goal is to invert this synthetic seismic section for [Formula: see text]. If we use standard seismic inversion based solely on seismic data, the inverted attenuation model has low resolution and incorrect positioning, and it is distorted. However, adding our relation between velocity and attenuation, we obtain an attenuation model very close to the original section. This method is tested on a 2D field seismic data set from Gulf of Mexico. The resulting [Formula: see text] model matches the geologic shape of an absorption body interpreted from the seismic section. Using this [Formula: see text] model in seismic migration, we make the seismic events below the high-absorption layer clearly visible, with improved frequency content and coherency of the events.


2017 ◽  
Vol 5 (4) ◽  
pp. T523-T530
Author(s):  
Ehsan Zabihi Naeini ◽  
Mark Sams

Broadband reprocessed seismic data from the North West Shelf of Australia were inverted using wavelets estimated with a conventional approach. The inversion method applied was a facies-based inversion, in which the low-frequency model is a product of the inversion process itself, constrained by facies-dependent input trends, the resultant facies distribution, and the match to the seismic. The results identified the presence of a gas reservoir that had recently been confirmed through drilling. The reservoir is thin, with up to 15 ms of maximum thickness. The bandwidth of the seismic data is approximately 5–70 Hz, and the well data used to extract the wavelet used in the inversion are only 400 ms long. As such, there was little control on the lowest frequencies of the wavelet. Different wavelets were subsequently estimated using a variety of new techniques that attempt to address the limitations of short well-log segments and low-frequency seismic. The revised inversion showed greater gas-sand continuity and an extension of the reservoir at one flank. Noise-free synthetic examples indicate that thin-bed delineation can depend on the accuracy of the low-frequency content of the wavelets used for inversion. Underestimation of the low-frequency contents can result in missing thin beds, whereas underestimation of high frequencies can introduce false thin beds. Therefore, it is very important to correctly capture the full frequency content of the seismic data in terms of the amplitude and phase spectra of the estimated wavelets, which subsequently leads to a more accurate thin-bed reservoir characterization through inversion.


Sign in / Sign up

Export Citation Format

Share Document