Hydraulic fracture-height containment by permeable weak bedding interfaces

Geophysics ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. MR137-MR152 ◽  
Author(s):  
Xiaowei Weng ◽  
Dimitry Chuprakov ◽  
Olga Kresse ◽  
Romain Prioul ◽  
Haotian Wang

In laminated formations, the vertical height growth of a hydraulic fracture can be strongly influenced by the interaction of the fracture tip with the bedding interfaces it crosses. A weak interface may fail in shear and then slip, depending on the strength and frictional properties, the effective vertical stress at the interface, and the net pressure. Shear failure and slippage at the interface can retard the height growth or even stop it completely. A 2D analytical model called the FracT model has been developed that examines the shear slippage along the bedding interface adjacent to the fracture tip and the resulting blunting of the fracture tip at the interface, as well as the stress condition on the face opposite from the hydraulic fracture tip for possible fracture nucleation that leads to fracture crossing. The growth of the shear slippage along the interface with time is coupled with the fluid flow into the permeable interface. A parametric study has been carried out to investigate the key formation parameters that influence the crossing/arrest of the fracture at the bedding interface and the shear slippage and depth of fluid penetration into the interface. The study suggests that the interfacial coefficient of friction and the ratio of the vertical to minimum horizontal stress are two of the most influential parameters governing fracture arrest by a weak interface. For the fracture tip to be arrested at the interface, the vertical stress acting on the interface must be close to the minimum horizontal stress or the interfacial coefficient of friction must be very small. The FracT model has also been integrated into a pseudo-3D-based complex hydraulic fracture model. This quantitative mechanistic model that incorporates a bedding-plane slip-driven mechanism is a necessary step to understand and bridge the characterization (sonic) and monitoring (microseismic) observations.

Geophysics ◽  
2017 ◽  
Vol 82 (6) ◽  
pp. MR153-MR162 ◽  
Author(s):  
Egor V. Dontsov

Shales are known to have a finely layered structure, which greatly influences the overall material’s response. Incorporating the effect of all these layers explicitly in a hydraulic fracture simulator would require a prohibitively fine mesh. To avoid such a scenario, a suitable homogenization, which would represent the effect of multiple layers in an average sense, should be performed. We consider a sample variation of elastic properties and minimum horizontal stress versus depth that has more than a hundred layers. We evaluate methodologies to homogenize the stress and the elastic properties. The elastic response of a layered material is found to be equivalent to that of a transversely isotropic material, and the explicit relations for the effective parameters are obtained. To illustrate the relevance of the homogenization procedure for hydraulic fracturing, the propagation of a plane strain hydraulic fracture in a finely layered shale is studied. To reduce the complexity of the numerical model, elastic layering is neglected and only the effect of the stress layers is analyzed. The results demonstrate the ability of the homogenized stress model to accurately capture the hydraulic fracture behavior using a relatively coarse mesh. This result is obtained by using a special asymptotic solution at the tip element that accounts for the local stress variation near the tip, which effectively treats the material at the tip element as nonhomogenized.


2021 ◽  
Vol 44 (2) ◽  
pp. 95-105
Author(s):  
Agus M. Ramdhan

In situ stress is importance in the petroleum industry because it will significantly enhance our understanding of present-day deformation in a sedimentary basin. The Northeast Java Basin is an example of a tectonically active basin in Indonesia. However, the in situ stress in this basin is still little known. This study attempts to analyze the regional in situ stress (i.e., vertical stress, minimum and maximum horizontal stresses) magnitude and orientation, and stress regime in the onshore part of the Northeast Java Basin based on twelve wells data, consist of density log, direct/indirect pressure test, and leak-off test (LOT) data. The magnitude of vertical (  and minimum horizontal (  stresses were determined using density log and LOT data, respectively. Meanwhile, the orientation of maximum horizontal stress  (  was determined using image log data, while its magnitude was determined based on pore pressure, mudweight, and the vertical and minimum horizontal stresses. The stress regime was simply analyzed based on the magnitude of in situ stress using Anderson’s faulting theory. The results show that the vertical stress ( ) in wells that experienced less erosion can be determined using the following equation: , where  is in psi, and z is in ft. However, wells that experienced severe erosion have vertical stress gradients higher than one psi/ft ( . The minimum horizontal stress ( ) in the hydrostatic zone can be estimated as, while in the overpressured zone, . The maximum horizontal stress ( ) in the shallow and deep hydrostatic zones can be estimated using equations: and , respectively. While in the overpressured zone, . The orientation of  is ~NE-SW, with a strike-slip faulting stress regime.


2020 ◽  
Author(s):  
anan wu

<p>Research on hydraulic fracture initiation and vertical propagation</p><p>behavior in laminated tight formation</p><p>Anan Wu<sup>1</sup>, Bing Hou<sup>*1</sup>, Fei Gao<sup>2</sup>,Yifan Dai<sup>1</sup>,Mian Chen<sup>1</sup></p><ul><li>(1. State Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum-Beijing, Beijing, China No.1 Cementing Company, Bohai Drilling Engineering Company Limited, CNPC, China. Renqiu,062550)</li> </ul><p> </p><p><strong>Abstract: </strong>The extent of hydraulic fracture vertical propagation extent is important in evaluating simulated reservoir volume for laminated tight reservoirs. Given that it is affected by the discontinuities (beddings, natural fractures, and other factors), fracture geometry is complex in the vertical plane and is different from a simple fracture in a homogeneous formation. Because the tight formation bedding is very developed, hydraulic fracture is difficult to spread vertically. Now,the propagation mechanism of hydraulic fracture in the vertical plane has not been well understood. To clarify this mechanism, several groups of large-scale tri-axial tests were deployed in this study to investigate the fracture initiation and vertical propagation behavior in laminated tight formation. The influences of multiple factors on fracture vertical propagation were studied.</p><p>we carried out the indoor hadraulic fracturing physical simulation experiments of the bedding-developed rocks. Tight cores obtained from the core well were wrapped with cement into 30 cm cubes, and samples were drilled and cemented. Before the experiment ,three-dimensional axial stress was applied to simulate the stratigraphic environment. When the stress was balanced, a certain flowing rate was set for hadraulic fracturing. After the fracturing work was completed, the cement block was opened to observe the hydraulic fracture propagation pattern.</p><p>The results showed that the ultimate fracture geometries could be classified into three categories: simple bedding fracture, slight turning fracture, stair-like fracture, and multilateral fishbone-like fracture network. Here comes some research knowledge:(1)When the difference between the vertical stress and the minimum horizontal principal stress is less than 12Mpa, the hydraulic fracture will only expand along the rock bedding plane Furthermore. (2)when the vertical stress difference is close to 14 MPa, hydraulic fractures will generate vertical fractures that will communicate multiple beddings of the rock. (3)Increasing flowing rate will cause a slight turning or jumping fractures and improve the complexity of fractures to a certain extent. (4)because of the influence of beddings and lithology,the fracture pressure is usually high.</p><p><strong>Key words:</strong> Hydraulic fracturing, tight reversior Bedding plane, fracture morphology.</p>


2020 ◽  
Vol 8 (4) ◽  
pp. T1023-T1036
Author(s):  
Cristina Mariana Ruse ◽  
Mehdi Mokhtari

To avoid steep declines in the Tuscaloosa Marine Shale (TMS) production, wells are fracture-stimulated to release the hydrocarbons trapped in the matrix of the formation. An accurate estimation of Young’s modulus and Poisson’s ratio is essential for hydraulic fracture propagation. In addition, ignoring the highly heterogeneous and anisotropic character of TMS can lead to erroneous stress values, which subsequently affect hydraulic fracture width estimates and the overall hydraulic fracturing process. We have developed an empirical 1D geomechanical model that takes into account VTI anisotropy, and it is used to characterize the elastic mechanical properties of TMS in two wells. In the analyzed formation, the vertical Poisson’s ratio is less than the horizontal Poisson’s ratio, which suggests the necessity of an alternative to the ANNIE equations. The stiffness coefficients [Formula: see text] and [Formula: see text] were estimated using the relationships developed from the ultrasonic core data available for the two TMS. Further, correlations between the static and dynamic properties from laboratory tests were used to improve the minimum horizontal stress calculation. We compare VTI Young’s moduli, Poisson’s ratios, and minimum horizontal stress with the isotropic solution. VTI modeling improves the estimation of the elastic mechanical properties. The isotropic solution underestimates the minimum horizontal stress in the formation. Moreover, it was shown that the 20 ft shale interval below the TMS base is characterized by a low Young’s modulus (the vertical Young’s modulus is equal to 20 GPa, whereas the horizontal Young’s modulus is equal to 40 GPa) and may be a frac barrier.


1984 ◽  
Vol 24 (01) ◽  
pp. 19-32 ◽  
Author(s):  
Lawrence W. Teufel ◽  
James A. Clark

Abstract Fracture geometry is an important concern in the design of a massive hydraulic fracture for improved natural gas recovery from low-permeability reservoirs. Determination of the extent of vertical fracture growth and containment in layered rock, a priori, requires an improved understanding of the parameters that may control fracture growth across layer interfaces. We have conducted laboratory hydraulic fracture experiments and elastic finite element studies that show that at least two distinct geologic conditions can inhibit or contain the vertical growth of hydraulic fractures in layered rock:a weak interfacial shear strength of the layers andan increase in the minimum horizontal compressive stress in the bounding layers. The second condition is more important and more likely to occur at depth. Differences in elastic properties within a layered rock mass may be important-not as a containment barrier perse, but in the manner in which variations in elastic properties affect the vertical distribution of the minimum horizontal stress magnitude. These results suggest that improved fracture treatment designs and an assessment of the potential success of stimulations in low-permeability reservoirs can be made by determining the in-situ stress st ate in the producing interval and bounding formations before stimulation. If the bounding formations have a higher minimum horizontal stress, then one can optimize the fracture treatment and maximize the ratio of productive formation fracture area to volume of fluid pumped by limiting bottomhole pressures to that of the bounding formation. Introduction In 1949, Clark introduced the concept of hydraulic fracturing to the petroleum industry. Since then, hydraulic fracture treatment to enhance oil and gas recovery in tight reservoir rocks has become standard practice. More recently, as a result of an increased need for better recovery techniques, massive hydraulic fracturing (MHF) has been used in low-permeability, gas-bearing sandstones in the Rock Mountain region and in Devonian shales of the Appalachian region, where it is uneconomical to retrieve gas in the conventional manner. Massive hydraulic fractures are designed to extend as much as 1000 m (3,281 ft) radially from the wellbore and generally require up to 1000 m3 (6,293 bbl) of fracture fluid. MHF has been developed by trial and error, and the results are uncertain in many situations. Some of these large-scale stimulation efforts have been successful, but others have been extremely disappointing failures. The reasons for these failures are not clear, but it seems likely that improved understanding of the fundamental mechanisms of hydraulic fracturing should suggest ways of improving the efficiency and reliability of the MHF stimulation technique or at least indicate where this technique can be applied successfully. Among the many technological problems encountered in MHF, one of the most important questions that must be answered properly to design a hydraulic fracture treatment for optimal gas recovery concerns the shape and overall geometry of the fracture. The question of fracture height and whether the hydraulic fracture will propagate into formations lying above and below the producing zone. When a fracture treatment is designed, the height of the fracture is the parameter about which the least is known, yet this influences all aspects of the design. A hydraulic fracture usually grows outward in a vertical plane and propagates above and below the packers as well as laterally away from the wellbore. Vertical propagation is undesirable whenever the fracturing is to be contained within a single stratigraphic interval. If the hydraulic fracture is not contained within the producing formation and propagates in both the vertical and lateral directions (an elliptical fracture), failure of the treatment can occur because the fracture fails to contact a sufficiently large area of the reservoir. Moreover, there is an effective loss of the expensive fracture fluid and proppant used to fracture the unproductive formations. An extreme example where the containment of a hydraulic fracture is essential is the case of developing a fracture in a gas-producing sandstone without fracturing through the underlying shale into another sandstone that is water-bearing. Therefore, it is of great economic importance to the gas industry to understand the parameters that can restrict the vertical propagation of massive hydraulic fractures. There are several parameters that are considered to have some effect on the vertical growth and possible containment of hydraulic fractures. SPEJ P. 19^


2021 ◽  
Vol 44 (2) ◽  
pp. 83-95
Author(s):  
Agus M. Ramdhan

In situ stress is importance in the petroleum industry because it will significantly enhance our understanding of present-day deformation in a sedimentary basin. The Northeast Java Basin is an example of a tectonically active basin in Indonesia. However, the in situ stress in this basin is still little known. This study attempts to analyze the regional in situ stress (i.e., vertical stress, minimum and maximum horizontal stresses) magnitude and orientation, and stress regime in the onshore part of the Northeast Java Basin based on twelve wells data, consist of density log, direct/indirect pressure test, and leak-off test (LOT) data. The magnitude of vertical (  and minimum horizontal (  stresses were determined using density log and LOT data, respectively. Meanwhile, the orientation of maximum horizontal stress  (  was determined using image log data, while its magnitude was determined based on pore pressure, mudweight, and the vertical and minimum horizontal stresses. The stress regime was simply analyzed based on the magnitude of in situ stress using Anderson’s faulting theory. The results show that the vertical stress ( ) in wells that experienced less erosion can be determined using the following equation: , where  is in psi, and z is in ft. However, wells that experienced severe erosion have vertical stress gradients higher than one psi/ft ( . The minimum horizontal stress ( ) in the hydrostatic zone can be estimated as, while in the overpressured zone, . The maximum horizontal stress ( ) in the shallow and deep hydrostatic zones can be estimated using equations: and , respectively. While in the overpressured zone, . The orientation of  is ~NE-SW, with a strike-slip faulting stress regime.


2021 ◽  
pp. 1-19
Author(s):  
Aymen Al-Ameri

Summary Sand production is a serious problem in oil and gas wells, and one of the main concerns of production engineers. This problem can damage downhole equipment and surface production facilities. This study presents a sand production case and quantifies sanding risks for an oil field in Iraq. The study applies an integrated workflow of constructing 1D Mechanical Earth Modeling (MEM) and predicting the sand production with multiple criteria such as shear failure during drilling, B index, and critical bottomhole pressure (CBHP) or critical drawdown pressure (CDDP). Wireline log data were used to estimate the mechanical properties of the formations in the field. The predicted sand production propensity was validated based on the sand production history in the field. The interpretation results of some wells anticipated in this study showed that when a shear failure occurs during drilling, the B index is around 2 × 104 MPa or less and the CBHP is equal to the formation pore pressure. For this case, sand control shall be carried out in the initial stage of production. On the other hand, when the shear failure does not exist, the B index is always greater than 2 × 104 MPa, and the CBHP is mostly less than the formation pore pressure. In this case, implementing sand control methods could be postponed as the reservoir pressure undergoes depletion. However, for the anticipated field, sand control is recommended to be carried out in the initial stage of well production even when the CBHP is less than the formation pore pressure since sanding will be inevitable when the reservoir pressure depletes to values close to the initial reservoir pressure. The tentative evaluation of the stress regime showed that a normal fault could be the stress regime for the formations. For a normal fault stress regime, the study explained that when the reservoir permeability is isotropic, an openhole vertical wellbore has less propensity for sand production than a horizontal wellbore. Moreover, when the wellbore azimuth is in the direction of the minimum horizontal stress, the CBHP will be lower than in any other azimuth, and sanding will take place at higher wellbore inclination angles. For the anticipated field, because of the casedhole well completion and the anisotropic reservoir permeability, a horizontal well drilled in the direction of minimum horizontal stress with oriented perforation in the direction of maximum horizontal stress is an alternative method for controlling sand production.


2014 ◽  
Vol 548-549 ◽  
pp. 1885-1892
Author(s):  
Li Min Ran ◽  
He Ping Pan ◽  
Yong Gang Zhao

The magnitude, distribution of earth stress are important parameters. In this paper, based on the hydraulic fracturing test data and logging data, the model of earth stress has been established. The vertical stress (Sv),the maximum horizontal stress (SH), the minimum horizontal stress (Sh) can be calculated by logging data with this model. The profiles of earth stress along the depth with continuous distribution can be determined, and stress spatial distribution has been described.


Geophysics ◽  
2016 ◽  
Vol 81 (3) ◽  
pp. D245-D261 ◽  
Author(s):  
Jaime Meléndez-Martínez ◽  
Douglas R. Schmitt

We obtained the complete set of dynamic elastic stiffnesses for a suite of “shales” representative of unconventional reservoirs from simultaneously measured P- and S-wave speeds on single prisms specially machined from cores. Static linear compressibilities were concurrently obtained using strain gauges attached to the prism. Regardless of being from static or dynamic measurements, the pressure sensitivity varies strongly with the direction of measurement. Furthermore, the static and dynamic linear compressibilities measured parallel to the bedding are nearly the same whereas those perpendicular to the bedding can differ by as much as 100%. Compliant cracklike porosity, seen in scanning electron microscope images, controls the elastic properties measured perpendicular to the rock’s bedding plane and results in highly nonlinear pressure sensitivity. In contrast, those properties measured parallel to the bedding are nearly insensitive to stress. This anisotropy to the pressure dependency of the strains and moduli further complicates the study of the overall anisotropy of such rocks. This horizontal stress insensitivity has implications for the use of advanced sonic logging techniques for stress direction indication. Finally, we tested the validity of the practice of estimating the fracture pressure gradient (i.e., horizontal stress) using our observed elastic engineering moduli and found that ignoring anisotropy would lead to underestimates of the minimum stress by as much as 90%. Although one could ostensibly obtain better values or the minimum stress if the rock anisotropy is included, we would hope that these results will instead discourage this method of estimating horizontal stress in favor of more reliable techniques.


2012 ◽  
Vol 27 (01) ◽  
pp. 8-19 ◽  
Author(s):  
M. Kevin Fisher ◽  
Norman R. Warpinski

Sign in / Sign up

Export Citation Format

Share Document