Integrated Mechanical Earth Modeling for Predicting Sand Production: A Case Study

2021 ◽  
pp. 1-19
Author(s):  
Aymen Al-Ameri

Summary Sand production is a serious problem in oil and gas wells, and one of the main concerns of production engineers. This problem can damage downhole equipment and surface production facilities. This study presents a sand production case and quantifies sanding risks for an oil field in Iraq. The study applies an integrated workflow of constructing 1D Mechanical Earth Modeling (MEM) and predicting the sand production with multiple criteria such as shear failure during drilling, B index, and critical bottomhole pressure (CBHP) or critical drawdown pressure (CDDP). Wireline log data were used to estimate the mechanical properties of the formations in the field. The predicted sand production propensity was validated based on the sand production history in the field. The interpretation results of some wells anticipated in this study showed that when a shear failure occurs during drilling, the B index is around 2 × 104 MPa or less and the CBHP is equal to the formation pore pressure. For this case, sand control shall be carried out in the initial stage of production. On the other hand, when the shear failure does not exist, the B index is always greater than 2 × 104 MPa, and the CBHP is mostly less than the formation pore pressure. In this case, implementing sand control methods could be postponed as the reservoir pressure undergoes depletion. However, for the anticipated field, sand control is recommended to be carried out in the initial stage of well production even when the CBHP is less than the formation pore pressure since sanding will be inevitable when the reservoir pressure depletes to values close to the initial reservoir pressure. The tentative evaluation of the stress regime showed that a normal fault could be the stress regime for the formations. For a normal fault stress regime, the study explained that when the reservoir permeability is isotropic, an openhole vertical wellbore has less propensity for sand production than a horizontal wellbore. Moreover, when the wellbore azimuth is in the direction of the minimum horizontal stress, the CBHP will be lower than in any other azimuth, and sanding will take place at higher wellbore inclination angles. For the anticipated field, because of the casedhole well completion and the anisotropic reservoir permeability, a horizontal well drilled in the direction of minimum horizontal stress with oriented perforation in the direction of maximum horizontal stress is an alternative method for controlling sand production.

2020 ◽  
Vol 60 (1) ◽  
pp. 267
Author(s):  
Sadegh Asadi ◽  
Abbas Khaksar ◽  
Mark Fabian ◽  
Roger Xiang ◽  
David N. Dewhurst ◽  
...  

Accurate knowledge of in-situ stresses and rock mechanical properties are required for a reliable sanding risk evaluation. This paper shows an example, from the Waitsia Gas Field in the northern Perth Basin, where a robust well centric geomechanical model is calibrated with field data and laboratory rock mechanical tests. The analysis revealed subtle variations from the regional stress regime for the target reservoir with significant implications for sanding tendency and sand management strategies. An initial evaluation using a non-calibrated stress model indicated low sanding risks under both initial and depleted pressure conditions. However, the revised sanding evaluation calibrated with well test observations indicated considerable sanding risk after 500 psi of pressure depletion. The sanding rate is expected to increase with further depletion, requiring well intervention for existing producers and active sand control for newly drilled wells that are cased and perforated. This analysis indicated negligible field life sanding risk for vertical and low-angle wells if completed open hole. The results are used for sand management in existing wells and completion decisions for future wells. A combination of passive surface handling and downhole sand control methods are considered on a well-by-well basis. Existing producers are currently monitored for sand production using acoustic detectors. For full field development, sand catchers will also be installed as required to ensure sand production is quantified and managed.


2021 ◽  
Vol 44 (2) ◽  
pp. 95-105
Author(s):  
Agus M. Ramdhan

In situ stress is importance in the petroleum industry because it will significantly enhance our understanding of present-day deformation in a sedimentary basin. The Northeast Java Basin is an example of a tectonically active basin in Indonesia. However, the in situ stress in this basin is still little known. This study attempts to analyze the regional in situ stress (i.e., vertical stress, minimum and maximum horizontal stresses) magnitude and orientation, and stress regime in the onshore part of the Northeast Java Basin based on twelve wells data, consist of density log, direct/indirect pressure test, and leak-off test (LOT) data. The magnitude of vertical (  and minimum horizontal (  stresses were determined using density log and LOT data, respectively. Meanwhile, the orientation of maximum horizontal stress  (  was determined using image log data, while its magnitude was determined based on pore pressure, mudweight, and the vertical and minimum horizontal stresses. The stress regime was simply analyzed based on the magnitude of in situ stress using Anderson’s faulting theory. The results show that the vertical stress ( ) in wells that experienced less erosion can be determined using the following equation: , where  is in psi, and z is in ft. However, wells that experienced severe erosion have vertical stress gradients higher than one psi/ft ( . The minimum horizontal stress ( ) in the hydrostatic zone can be estimated as, while in the overpressured zone, . The maximum horizontal stress ( ) in the shallow and deep hydrostatic zones can be estimated using equations: and , respectively. While in the overpressured zone, . The orientation of  is ~NE-SW, with a strike-slip faulting stress regime.


1995 ◽  
Vol 35 (1) ◽  
pp. 494 ◽  
Author(s):  
A.J. Buffin ◽  
A.J. Sutherland ◽  
J.A. Gorski

Borehole breakouts and hydraulic fractures in­ferred from dipmeter and formation microscanner logs indicate that the minimum horizontal stress (σh) is oriented 035°N in the South Australian sector of the Otway Basin. Density and sonic check-shot log data indicate that vertical stress (σv) increases from approximately 20 MPa at a depth of one km to 44 MPa at two km and 68 MPa at three km. Assum­ing a normal fault condition (i.e. σy > σH > σh), the magnitude of σh is 75 per cent of the magnitude of the maximum horizontal stress (σH), and the magni­tude of σH is close to that of av. Sonic velocity compaction trends for shales suggest that pore pressure is generally near hydrostatic in the Otway Basin.Knowledge of the contemporary stress field has a number of implications for hydrocarbon produc­tion and exploration in the basin. Wellbore quality in vertical wells may be improved (breakouts sup­pressed) by increasing the mud weight to a level below that which induces hydraulic fracture, or other drilling problems related to excessive mud weight. Horizontal wells drilled in the σh direction (035°N/215°N) should be more stable than those drilled in the σH direction, and indeed than vertical wells. In any EOR operations where water flooding promotes hydraulic fracturing, injectors should be aligned in the aH (125°N/305°N) direction, and off­set from producers in the orthogonal σh direction. Any deviated/horizontal wells targeting the frac­tured basement play should be oriented in the σh (035°N/215°N) direction to maximise intersection with this open, natural fracture trend. Hydrocar­bon recovery in wells deviated towards 035°N/215°N may also be enhanced by inducing multiple hydrau­lic fractures along the wellbore.Considering exploration-related issues, faults following the dominant structural trend, sub-paral­lel to σH orientation, are the most prone to be non-sealing during any episodic build-up of pore pres­sure. Pre-existing vertical faults striking 080-095°N and 155-170°N are the most prone to at least a component of strike-slip reactivation within the contemporary stress field.


Geophysics ◽  
2017 ◽  
Vol 82 (6) ◽  
pp. ID35-ID44 ◽  
Author(s):  
Xiaodong Ma ◽  
Mark D. Zoback

We have conducted an integrated study to investigate the petrophysical and geomechanical factors controlling the effectiveness of hydraulic fracturing (HF) in four subparallel horizontal wells in the Mississippi Limestone-Woodford Shale (MSSP-WDFD) play in Oklahoma. In two MSSP wells, the minimum horizontal stress [Formula: see text] indicated by the instantaneous shut-in pressures of the HF stages are significantly less than the vertical stress [Formula: see text]. This, combined with observations of drilling-induced tensile fractures in the MSSP in a vertical well at the site, indicates that this formation is in a normal/strike-slip faulting stress regime, consistent with earthquake focal mechanisms and other stress indicators in the area. However, the [Formula: see text] values are systematically higher and vary significantly from stage to stage in two WDFD wells. The stages associated with the abnormally high [Formula: see text] values (close to [Formula: see text]) were associated with little to no proppant placement and a limited number of microseismic events. We used compositional logs to determine the content of compliant components (clay and kerogen). Due to small variations in the trajectories of the horizontal wells, they penetrated three thin, but compositionally distinct WDFD lithofacies. We found that [Formula: see text] along the WDFD horizontals increases when the stage occurred in a zone with high clay and kerogen content. These variations of [Formula: see text] can be explained by various degrees of viscous stress relaxation, which results in the increase in [Formula: see text] (less stress anisotropy), as the compliant component content increases. The distribution of microseismic events was also affected by normal and strike-slip faults cutting across the wells. The locations of these faults were consistent with unusual lineations of microseismic events and were confirmed by 3D seismic data. Thus, the overall effectiveness of HF stimulation in the WDFD wells at this site was strongly affected the abnormally high HF gradients in clay-rich lithofacies and the presence of preexisting, pad-scale faults.


2014 ◽  
Vol 2 (1) ◽  
pp. SB45-SB55 ◽  
Author(s):  
Fernando Enrique Ziegler ◽  
John F. Jones

In this case study, the overburden, pore-pressure, and fracture gradients are calculated for several nearby analog wells and subsequently used to generate a predrill pore-pressure prediction for the deepwater subsalt Gulf of Mexico well, Flying Dutchman, located in Green Canyon 511 no. 1 (OCS-G 22971). Two key analog wells penetrated the lower Miocene and have sufficient data to generate pore-pressure profiles. Subsequently, the predrill pore-pressure prediction is found to be in good agreement with the pore pressure estimated from well logs while drilling. During the drilling phase of the Flying Dutchman well, two zones of significant fluid loss and wellbore breathing were encountered and are evaluated as a means of determining the formation types where they are most likely to occur, as well as their related minimum horizontal stress and fracture gradient.


Geophysics ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. MR137-MR152 ◽  
Author(s):  
Xiaowei Weng ◽  
Dimitry Chuprakov ◽  
Olga Kresse ◽  
Romain Prioul ◽  
Haotian Wang

In laminated formations, the vertical height growth of a hydraulic fracture can be strongly influenced by the interaction of the fracture tip with the bedding interfaces it crosses. A weak interface may fail in shear and then slip, depending on the strength and frictional properties, the effective vertical stress at the interface, and the net pressure. Shear failure and slippage at the interface can retard the height growth or even stop it completely. A 2D analytical model called the FracT model has been developed that examines the shear slippage along the bedding interface adjacent to the fracture tip and the resulting blunting of the fracture tip at the interface, as well as the stress condition on the face opposite from the hydraulic fracture tip for possible fracture nucleation that leads to fracture crossing. The growth of the shear slippage along the interface with time is coupled with the fluid flow into the permeable interface. A parametric study has been carried out to investigate the key formation parameters that influence the crossing/arrest of the fracture at the bedding interface and the shear slippage and depth of fluid penetration into the interface. The study suggests that the interfacial coefficient of friction and the ratio of the vertical to minimum horizontal stress are two of the most influential parameters governing fracture arrest by a weak interface. For the fracture tip to be arrested at the interface, the vertical stress acting on the interface must be close to the minimum horizontal stress or the interfacial coefficient of friction must be very small. The FracT model has also been integrated into a pseudo-3D-based complex hydraulic fracture model. This quantitative mechanistic model that incorporates a bedding-plane slip-driven mechanism is a necessary step to understand and bridge the characterization (sonic) and monitoring (microseismic) observations.


2010 ◽  
Vol 13 (03) ◽  
pp. 449-464 ◽  
Author(s):  
Ajay Suri ◽  
Mukul M. Sharma

Summary Frac packs are increasingly being used for sand control in injection wells in poorly consolidated reservoirs. This completion allows for large injection rates and longer injector life. Many of the large offshore developments in the Gulf of Mexico and around the world rely on these completions for waterflooding and pressure maintenance. The performance of these injectors is crucial to the economics of the project because well intervention later in the life of the field is expensive and undesirable. For the first time, we present a model for water injection in frac-packed wells. The frac pack and the formation are plugged because of the deposition of particles from the injected water, and their effective permeability to water is continuously reduced. However, as the bottomhole pressure (BHP) reaches the frac-pack widening pressure, the frac-pack width increases and a channel that accommodates additional injected particles is created. Injectivity depends on the interstitial velocity of the injected water in the frac pack, volume concentration of the solids in the injected water, injection rate, injection-water temperature, size of proppants in the frac pack, width and length of the frac pack, and the initial minimum horizontal stress. In case of frac packs with large proppant size and high injection rates, the plugging of the frac pack is found to be negligible except in the building of a filter cake at the frac-pack walls. In the case of narrow frac packs with small proppant, significant plugging is expected, which leads to sharp permeability decline of the frac pack and a rapid rise in the BHP. The long-term injectivity of a frac-packed injector depends primarily on the filtration coefficient value of the frac pack, solids concentration in the injected water, and the injection rate. Frac packs are expected to maintain higher injectivities compared to any other completions such as openhole, cased-hole, perforated, or gravel packs.


2003 ◽  
Vol 125 (3) ◽  
pp. 169-176 ◽  
Author(s):  
M. K. Rahman ◽  
Zhixi Chen ◽  
Sheik S. Rahman

During drilling operations, the mud filtrate interacts with the pore fluid around the wellbore and changes pore pressure by capillary and chemical potential effects. Thus the change in pore pressure around borehole becomes time-dependent, particularly in extremely low permeability shaley formations. In this paper, the change in pore pressure due to capillary and chemical potential effects are investigated experimentally. Analytical models are also developed based on the experimental results. A wellbore stability analysis model incorporating the time-dependent change in pore pressure is applied to a vertical well in a shale formation under normal fault stress regime.


1997 ◽  
Vol 37 (1) ◽  
pp. 536
Author(s):  
R.R. Hillis ◽  
D.G. Crosby ◽  
A.K. Khurana

Theoretical fracture gradient relations are generally based on the assumption that the sedimentary sequence behaves elastically under conditions of lateral constraint. Hence the minimum horizontal stress (σhmin) is given by: where V is Poisson's ratio, σv is overburden stress, pp is pore pressure, and at is far -field tectonic stress. In driling practice, fracture initiation, or leak -off pressures, which are related to σhmin are most commonly predicted by the application of empirical stress /depth relations such as that proposed for offshore Western Australia by Vuckovic (1989): Leak -off pressure (psi) = 0.197D1145, where D is depth in feet. A modified form of the uniaxial elastic relation for the prediction of σhmin is proposed, such that: where the constants c and d are straight line regression constants derived from cross -plotting effective minimum horizontal stress and effective vertical stress. This relation, as opposed to previous empirical approaches to fracture gradient /σhmin determination, yields regression coefficients of physical significance: c represents the average Poisson's ratio term, v /(1 -v), and d represents an estimate of the tectonic (and inelastic) component of the minimum horizontal stress. This application of the modified fracture gradient relation, termed the effective stress cross -plot method, is tested successfully against published data from experimental wells in the East Texas Basin where independent estimates of Poisson's ratio are available. Leak -off pressures have been compiled from 61 wells in the Timor Sea. Leak -off pressures in the Timor Sea are somewhat lower than predicted by Vuckovic's (1989) stress /depth relation for offshore Western Australia, and a new, empirical stress /depth relation, which better fits the Timor Sea data is proposed: The effective stress cross -plot method is also applied to the Timor Sea data, yielding: Detailed pore pressure data were not available for the Timor Sea data -set and the effective stress cross -plot method does not fit the observed data any better than the new empirical stress /depth relation. However, the regression constants suggest an average Poisson's ratio of 0.26 and a relatively insignificant tectonic stress of 1 MPa for the Timor Sea.


Sign in / Sign up

Export Citation Format

Share Document