Analysis of optimal transport and related misfit functions in full-waveform inversion

Geophysics ◽  
2018 ◽  
Vol 83 (1) ◽  
pp. A7-A12 ◽  
Author(s):  
Yunan Yang ◽  
Björn Engquist

Full-waveform inversion has evolved into a powerful computational tool in seismic imaging. New misfit functions for matching simulated and measured data have recently been introduced to avoid the traditional lack of convergence due to cycle skipping. We have introduced the Wasserstein distance from optimal transport for computing the misfit, and several groups are currently further developing this technique. We evaluate three essential observations of this new metric with implication for future development. One is the discovery that trace-by-trace comparison with the quadratic Wasserstein metric works remarkably well together with the adjoint-state method. Another is the close connection between optimal transport-based misfits and integrated techniques with normalization as, for example, the normalized integration method. Finally, we study the convexity with respect to selected model parameters for different normalizations and remark on the effect of normalization on the convergence of the adjoint-state method.

Geophysics ◽  
2018 ◽  
Vol 83 (1) ◽  
pp. R43-R62 ◽  
Author(s):  
Yunan Yang ◽  
Björn Engquist ◽  
Junzhe Sun ◽  
Brittany F. Hamfeldt

Conventional full-waveform inversion (FWI) using the least-squares norm as a misfit function is known to suffer from cycle-skipping issues that increase the risk of computing a local rather than the global minimum of the misfit. The quadratic Wasserstein metric has proven to have many ideal properties with regard to convexity and insensitivity to noise. When the observed and predicted seismic data are considered to be two density functions, the quadratic Wasserstein metric corresponds to the optimal cost of rearranging one density into the other, in which the transportation cost is quadratic in distance. Unlike the least-squares norm, the quadratic Wasserstein metric measures not only amplitude differences but also global phase shifts, which helps to avoid cycle-skipping issues. We have developed a new way of using the quadratic Wasserstein metric trace by trace in FWI and compare it with the global quadratic Wasserstein metric via the solution of the Monge-Ampère equation. We incorporate the quadratic Wasserstein metric technique into the framework of the adjoint-state method and apply it to several 2D examples. With the corresponding adjoint source, the velocity model can be updated using a quasi-Newton method. Numerical results indicate the effectiveness of the quadratic Wasserstein metric in alleviating cycle-skipping issues and sensitivity to noise. The mathematical theory and numerical examples demonstrate that the quadratic Wasserstein metric is a good candidate for a misfit function in seismic inversion.


Geophysics ◽  
2021 ◽  
pp. 1-42
Author(s):  
Guangchi Xing ◽  
Tieyuan Zhu

We formulate the Fréchet kernel computation using the adjoint-state method based on a fractional viscoacoustic wave equation. We first numerically prove that both the 1/2- and the 3/2-order fractional Laplacian operators are self-adjoint. Using this property, we show that the adjoint wave propagator preserves the dispersion and compensates the amplitude, while the time-reversed adjoint wave propagator behaves identically as the forward propagator with the same dispersion and dissipation characters. Without introducing rheological mechanisms, this formulation adopts an explicit Q parameterization, which avoids the implicit Q in the conventional viscoacoustic/viscoelastic full waveform inversion ( Q-FWI). In addition, because of the decoupling of operators in the wave equation, the viscoacoustic Fréchet kernel is separated into three distinct contributions with clear physical meanings: lossless propagation, dispersion, and dissipation. We find that the lossless propagation kernel dominates the velocity kernel, while the dissipation kernel dominates the attenuation kernel over the dispersion kernel. After validating the Fréchet kernels using the finite-difference method, we conduct a numerical example to demonstrate the capability of the kernels to characterize both velocity and attenuation anomalies. The kernels of different misfit measurements are presented to investigate their different sensitivities. Our results suggest that rather than the traveltime, the amplitude and the waveform kernels are more suitable to capture attenuation anomalies. These kernels lay the foundation for the multiparameter inversion with the fractional formulation, and the decoupled nature of them promotes our understanding of the significance of different physical processes in the Q-FWI.


2018 ◽  
Vol 37 (2) ◽  
pp. 142-145 ◽  
Author(s):  
Philipp Witte ◽  
Mathias Louboutin ◽  
Keegan Lensink ◽  
Michael Lange ◽  
Navjot Kukreja ◽  
...  

This tutorial is the third part of a full-waveform inversion (FWI) tutorial series with a step-by-step walkthrough of setting up forward and adjoint wave equations and building a basic FWI inversion framework. For discretizing and solving wave equations, we use Devito ( http://www.opesci.org/devito-public ), a Python-based domain-specific language for automated generation of finite-difference code ( Lange et al., 2016 ). The first two parts of this tutorial ( Louboutin et al., 2017 , 2018 ) demonstrated how to solve the acoustic wave equation for modeling seismic shot records and how to compute the gradient of the FWI objective function using the adjoint-state method. With these two key ingredients, we will now build an inversion framework that can be used to minimize the FWI least-squares objective function.


Geophysics ◽  
2018 ◽  
Vol 83 (2) ◽  
pp. R77-R88 ◽  
Author(s):  
Yunseok Choi ◽  
Tariq Alkhalifah

Full-waveform inversion (FWI) suffers from the cycle-skipping problem when the available frequency-band of data is not low enough. We have applied an exponential damping to the data to generate artificial low frequencies, which helps FWI to avoid cycle skipping. In this case, the least-squares misfit function does not properly deal with the exponentially damped wavefield in FWI because the amplitude of traces decays almost exponentially with increasing offset in a damped wavefield. Thus, we use a deconvolution-based objective function for FWI of the exponentially damped wavefield. The deconvolution filter includes inherently a normalization between the modeled and observed data; thus, it can address the unbalanced amplitude of a damped wavefield. We specifically normalize the modeled data with the observed data in the frequency-domain to estimate the deconvolution filter and selectively choose a frequency-band for normalization that mainly includes the artificial low frequencies. We calculate the gradient of the objective function using the adjoint-state method. The synthetic and benchmark data examples indicate that our FWI algorithm generates a convergent long-wavelength structure without low-frequency information in the recorded data.


2019 ◽  
Vol 219 (3) ◽  
pp. 1970-1988 ◽  
Author(s):  
Weiguang He ◽  
Romain Brossier ◽  
Ludovic Métivier ◽  
René-Édouard Plessix

SUMMARY Land seismic multiparameter full waveform inversion in anisotropic media is challenging because of high medium contrasts and surface waves. With a data-residual least-squares objective function, the surface wave energy usually masks the body waves and the gradient of the objective function exhibits high values in the very shallow depths preventing from recovering the deeper part of the earth model parameters. The optimal transport objective function, coupled with a Gaussian time-windowing strategy, allows to overcome this issue by more focusing on phase shifts and by balancing the contributions of the different events in the adjoint-source and the gradients. We first illustrate the advantages of the optimal transport function with respect to the least-squares one, with two realistic examples. We then discuss a vertical transverse isotropic (VTI) example starting from a quasi 1-D isotropic initial model. Despite some cycle-skipping issues in the initial model, the inversion based on the windowed optimal transport approach converges. Both the near-surface complexities and the variations at depth are recovered.


Geophysics ◽  
2016 ◽  
Vol 81 (4) ◽  
pp. R147-R155 ◽  
Author(s):  
Umair bin Waheed ◽  
Garret Flagg ◽  
Can Evren Yarman

Traveltime tomography using transmission data has been widely used for static corrections and for obtaining near-surface models for seismic depth imaging. More recently, it is also being used to build initial models for full-waveform inversion. The classic traveltime tomography approach based on ray tracing has difficulties in handling large data sets arising from current seismic acquisition surveys. Some of these difficulties can be addressed using the adjoint-state method, due to its low memory requirement and numerical efficiency. By coupling the gradient computation to nonlinear optimization, it avoids the need for explicit computation of the Fréchet derivative matrix. Furthermore, its cost is equivalent to twice the solution of the forward-modeling problem, irrespective of the size of the input data. The presence of anisotropy in the subsurface has been well established during the past few decades. The improved seismic images obtained by incorporating anisotropy into the seismic processing workflow justify the effort. However, previous literature on the adjoint-state method has only addressed the isotropic approximation of the subsurface. We have extended the adjoint-state technique for first-arrival traveltime tomography to vertical transversely isotropic (VTI) media. Because [Formula: see text] is weakly resolvable from surface seismic alone, we have developed the mathematical framework and procedure to invert for [Formula: see text] and [Formula: see text]. Our numerical tests on the VTI SEAM model demonstrate the ability of the algorithm to invert for near-surface model parameters and reveal the accuracy achievable by the algorithm.


Geophysics ◽  
2016 ◽  
Vol 81 (2) ◽  
pp. C53-C68 ◽  
Author(s):  
Nishant Kamath ◽  
Ilya Tsvankin

Most existing implementations of full-waveform inversion (FWI) are limited to acoustic approximations. In this paper, we present an algorithm for time-domain elastic FWI in laterally heterogeneous VTI (transversely isotropic with a vertical symmetry axis) media. The adjoint-state method is employed to derive the gradients of the objective function with respect to the stiffness coefficients and then to a chosen set of VTI parameters. To test the algorithm, we introduce Gaussian anomalies in the Thomsen parameters of a homogeneous VTI medium and perform 2D FWI of multicomponent transmission data for two different model parameterizations. To analyze the sensitivity of the objective function to the model parameters, the Fréchet kernel of FWI is obtained by linearizing the elastic wave equation using the Born approximation and employing the asymptotic Green’s function. The amplitude of the kernel (“radiation pattern”) yields the angle-dependent energy scattered by a perturbation in a certain model parameter. Then we convert the general expressions into simple approximations for the radiation patterns of P- and SV-waves in VTI media. These analytic developments provide valuable insight into the potential of multicomponent elastic FWI and help explain the numerical results for models with Gaussian anomalies in the VTI parameters.


Geophysics ◽  
2016 ◽  
Vol 81 (4) ◽  
pp. U25-U38 ◽  
Author(s):  
Nuno V. da Silva ◽  
Andrew Ratcliffe ◽  
Vetle Vinje ◽  
Graham Conroy

Parameterization lies at the center of anisotropic full-waveform inversion (FWI) with multiparameter updates. This is because FWI aims to update the long and short wavelengths of the perturbations. Thus, it is important that the parameterization accommodates this. Recently, there has been an intensive effort to determine the optimal parameterization, centering the fundamental discussion mainly on the analysis of radiation patterns for each one of these parameterizations, and aiming to determine which is best suited for multiparameter inversion. We have developed a new parameterization in the scope of FWI, based on the concept of kinematically equivalent media, as originally proposed in other areas of seismic data analysis. Our analysis is also based on radiation patterns, as well as the relation between the perturbation of this set of parameters and perturbation in traveltime. The radiation pattern reveals that this parameterization combines some of the characteristics of parameterizations with one velocity and two Thomsen’s parameters and parameterizations using two velocities and one Thomsen’s parameter. The study of perturbation of traveltime with perturbation of model parameters shows that the new parameterization is less ambiguous when relating these quantities in comparison with other more commonly used parameterizations. We have concluded that our new parameterization is well-suited for inverting diving waves, which are of paramount importance to carry out practical FWI successfully. We have demonstrated that the new parameterization produces good inversion results with synthetic and real data examples. In the latter case of the real data example from the Central North Sea, the inverted models show good agreement with the geologic structures, leading to an improvement of the seismic image and flatness of the common image gathers.


Geophysics ◽  
2021 ◽  
pp. 1-37
Author(s):  
Xinhai Hu ◽  
Wei Guoqi ◽  
Jianyong Song ◽  
Zhifang Yang ◽  
Minghui Lu ◽  
...  

Coupling factors of sources and receivers vary dramatically due to the strong heterogeneity of near surface, which are as important as the model parameters for the inversion success. We propose a full waveform inversion (FWI) scheme that corrects for variable coupling factors while updating the model parameter. A linear inversion is embedded into the scheme to estimate the source and receiver factors and compute the amplitude weights according to the acquisition geometry. After the weights are introduced in the objective function, the inversion falls into the category of separable nonlinear least-squares problems. Hence, we could use the variable projection technique widely used in source estimation problem to invert the model parameter without the knowledge of source and receiver factors. The efficacy of the inversion scheme is demonstrated with two synthetic examples and one real data test.


Sign in / Sign up

Export Citation Format

Share Document