3D seismic geometry quality control and corrections by applying machine learning

Geophysics ◽  
2019 ◽  
Vol 84 (6) ◽  
pp. P87-P96 ◽  
Author(s):  
Wenbin Jiang ◽  
Jie Zhang ◽  
Lee Bell

Seismic geometry quality control (QC) and corrections are crucial but labor-intensive steps in seismic data preprocessing. Current methods to estimate the correct positions of sources and receivers are usually based on the first-break traveltimes, which may contain large errors, thereby affecting the accuracy of the results. We have applied a deep convolutional neural network to identify shots and receivers that have position error, and we searched for the correct position. Once an error in position is identified by scanning data, a grid search for the correct location is conducted and the result is evaluated by the system until an optimal position is found. The network is trained on 3200 training sets from real data that have been corrected by the traditional method. Through cross validation on 800 sets, the classifier achieves a precision of 99.5% and a recall rate of 1. The final errors between the true positions and corrected positions are less than 10% of the shot spacing. An uncorrected real data experiment reveals that the proposed machine-learning method for geometry QC and correction provides similar results to the conventional manual correction approach but without human interference. Because the wavefield pattern of the training data for this purpose is global, there is no need to train the system again when applying the method to correct receiver position or process another data set. This claim is verified with different real data.

Author(s):  
Ritu Khandelwal ◽  
Hemlata Goyal ◽  
Rajveer Singh Shekhawat

Introduction: Machine learning is an intelligent technology that works as a bridge between businesses and data science. With the involvement of data science, the business goal focuses on findings to get valuable insights on available data. The large part of Indian Cinema is Bollywood which is a multi-million dollar industry. This paper attempts to predict whether the upcoming Bollywood Movie would be Blockbuster, Superhit, Hit, Average or Flop. For this Machine Learning techniques (classification and prediction) will be applied. To make classifier or prediction model first step is the learning stage in which we need to give the training data set to train the model by applying some technique or algorithm and after that different rules are generated which helps to make a model and predict future trends in different types of organizations. Methods: All the techniques related to classification and Prediction such as Support Vector Machine(SVM), Random Forest, Decision Tree, Naïve Bayes, Logistic Regression, Adaboost, and KNN will be applied and try to find out efficient and effective results. All these functionalities can be applied with GUI Based workflows available with various categories such as data, Visualize, Model, and Evaluate. Result: To make classifier or prediction model first step is learning stage in which we need to give the training data set to train the model by applying some technique or algorithm and after that different rules are generated which helps to make a model and predict future trends in different types of organizations Conclusion: This paper focuses on Comparative Analysis that would be performed based on different parameters such as Accuracy, Confusion Matrix to identify the best possible model for predicting the movie Success. By using Advertisement Propaganda, they can plan for the best time to release the movie according to the predicted success rate to gain higher benefits. Discussion: Data Mining is the process of discovering different patterns from large data sets and from that various relationships are also discovered to solve various problems that come in business and helps to predict the forthcoming trends. This Prediction can help Production Houses for Advertisement Propaganda and also they can plan their costs and by assuring these factors they can make the movie more profitable.


2019 ◽  
Vol 9 (6) ◽  
pp. 1128 ◽  
Author(s):  
Yundong Li ◽  
Wei Hu ◽  
Han Dong ◽  
Xueyan Zhang

Using aerial cameras, satellite remote sensing or unmanned aerial vehicles (UAV) equipped with cameras can facilitate search and rescue tasks after disasters. The traditional manual interpretation of huge aerial images is inefficient and could be replaced by machine learning-based methods combined with image processing techniques. Given the development of machine learning, researchers find that convolutional neural networks can effectively extract features from images. Some target detection methods based on deep learning, such as the single-shot multibox detector (SSD) algorithm, can achieve better results than traditional methods. However, the impressive performance of machine learning-based methods results from the numerous labeled samples. Given the complexity of post-disaster scenarios, obtaining many samples in the aftermath of disasters is difficult. To address this issue, a damaged building assessment method using SSD with pretraining and data augmentation is proposed in the current study and highlights the following aspects. (1) Objects can be detected and classified into undamaged buildings, damaged buildings, and ruins. (2) A convolution auto-encoder (CAE) that consists of VGG16 is constructed and trained using unlabeled post-disaster images. As a transfer learning strategy, the weights of the SSD model are initialized using the weights of the CAE counterpart. (3) Data augmentation strategies, such as image mirroring, rotation, Gaussian blur, and Gaussian noise processing, are utilized to augment the training data set. As a case study, aerial images of Hurricane Sandy in 2012 were maximized to validate the proposed method’s effectiveness. Experiments show that the pretraining strategy can improve of 10% in terms of overall accuracy compared with the SSD trained from scratch. These experiments also demonstrate that using data augmentation strategies can improve mAP and mF1 by 72% and 20%, respectively. Finally, the experiment is further verified by another dataset of Hurricane Irma, and it is concluded that the paper method is feasible.


Geophysics ◽  
2006 ◽  
Vol 71 (5) ◽  
pp. U67-U76 ◽  
Author(s):  
Robert J. Ferguson

The possibility of improving regularization/datuming of seismic data is investigated by treating wavefield extrapolation as an inversion problem. Weighted, damped least squares is then used to produce the regularized/datumed wavefield. Regularization/datuming is extremely costly because of computing the Hessian, so an efficient approximation is introduced. Approximation is achieved by computing a limited number of diagonals in the operators involved. Real and synthetic data examples demonstrate the utility of this approach. For synthetic data, regularization/datuming is demonstrated for large extrapolation distances using a highly irregular recording array. Without approximation, regularization/datuming returns a regularized wavefield with reduced operator artifacts when compared to a nonregularizing method such as generalized phase shift plus interpolation (PSPI). Approximate regularization/datuming returns a regularized wavefield for approximately two orders of magnitude less in cost; but it is dip limited, though in a controllable way, compared to the full method. The Foothills structural data set, a freely available data set from the Rocky Mountains of Canada, demonstrates application to real data. The data have highly irregular sampling along the shot coordinate, and they suffer from significant near-surface effects. Approximate regularization/datuming returns common receiver data that are superior in appearance compared to conventional datuming.


2021 ◽  
Author(s):  
Eva van der Kooij ◽  
Marc Schleiss ◽  
Riccardo Taormina ◽  
Francesco Fioranelli ◽  
Dorien Lugt ◽  
...  

<p>Accurate short-term forecasts, also known as nowcasts, of heavy precipitation are desirable for creating early warning systems for extreme weather and its consequences, e.g. urban flooding. In this research, we explore the use of machine learning for short-term prediction of heavy rainfall showers in the Netherlands.</p><p>We assess the performance of a recurrent, convolutional neural network (TrajGRU) with lead times of 0 to 2 hours. The network is trained on a 13-year archive of radar images with 5-min temporal and 1-km spatial resolution from the precipitation radars of the Royal Netherlands Meteorological Institute (KNMI). We aim to train the model to predict the formation and dissipation of dynamic, heavy, localized rain events, a task for which traditional Lagrangian nowcasting methods still come up short.</p><p>We report on different ways to optimize predictive performance for heavy rainfall intensities through several experiments. The large dataset available provides many possible configurations for training. To focus on heavy rainfall intensities, we use different subsets of this dataset through using different conditions for event selection and varying the ratio of light and heavy precipitation events present in the training data set and change the loss function used to train the model.</p><p>To assess the performance of the model, we compare our method to current state-of-the-art Lagrangian nowcasting system from the pySTEPS library, like S-PROG, a deterministic approximation of an ensemble mean forecast. The results of the experiments are used to discuss the pros and cons of machine-learning based methods for precipitation nowcasting and possible ways to further increase performance.</p>


2020 ◽  
Vol 30 (11n12) ◽  
pp. 1759-1777
Author(s):  
Jialing Liang ◽  
Peiquan Jin ◽  
Lin Mu ◽  
Jie Zhao

With the development of Web 2.0, social media such as Twitter and Sina Weibo have become an essential platform for disseminating hot events. Simultaneously, due to the free policy of microblogging services, users can post user-generated content freely on microblogging platforms. Accordingly, more and more hot events on microblogging platforms have been labeled as spammers. Spammers will not only hurt the healthy development of social media but also introduce many economic and social problems. Therefore, the government and enterprises must distinguish whether a hot event on microblogging platforms is a spammer or is a naturally-developing event. In this paper, we focus on the hot event list on Sina Weibo and collect the relevant microblogs of each hot event to study the detecting methods of spammers. Notably, we develop an integral feature set consisting of user profile, user behavior, and user relationships to reflect various factors affecting the detection of spammers. Then, we employ typical machine learning methods to conduct extensive experiments on detecting spammers. We use a real data set crawled from the most prominent Chinese microblogging platform, Sina Weibo, and evaluate the performance of 10 machine learning models with five sampling methods. The results in terms of various metrics show that the Random Forest model and the over-sampling method achieve the best accuracy in detecting spammers and non-spammers.


Author(s):  
Yanxiang Yu ◽  
◽  
Chicheng Xu ◽  
Siddharth Misra ◽  
Weichang Li ◽  
...  

Compressional and shear sonic traveltime logs (DTC and DTS, respectively) are crucial for subsurface characterization and seismic-well tie. However, these two logs are often missing or incomplete in many oil and gas wells. Therefore, many petrophysical and geophysical workflows include sonic log synthetization or pseudo-log generation based on multivariate regression or rock physics relations. Started on March 1, 2020, and concluded on May 7, 2020, the SPWLA PDDA SIG hosted a contest aiming to predict the DTC and DTS logs from seven “easy-to-acquire” conventional logs using machine-learning methods (GitHub, 2020). In the contest, a total number of 20,525 data points with half-foot resolution from three wells was collected to train regression models using machine-learning techniques. Each data point had seven features, consisting of the conventional “easy-to-acquire” logs: caliper, neutron porosity, gamma ray (GR), deep resistivity, medium resistivity, photoelectric factor, and bulk density, respectively, as well as two sonic logs (DTC and DTS) as the target. The separate data set of 11,089 samples from a fourth well was then used as the blind test data set. The prediction performance of the model was evaluated using root mean square error (RMSE) as the metric, shown in the equation below: RMSE=sqrt(1/2*1/m* [∑_(i=1)^m▒〖(〖DTC〗_pred^i-〖DTC〗_true^i)〗^2 + 〖(〖DTS〗_pred^i-〖DTS〗_true^i)〗^2 ] In the benchmark model, (Yu et al., 2020), we used a Random Forest regressor and conducted minimal preprocessing to the training data set; an RMSE score of 17.93 was achieved on the test data set. The top five models from the contest, on average, beat the performance of our benchmark model by 27% in the RMSE score. In the paper, we will review these five solutions, including preprocess techniques and different machine-learning models, including neural network, long short-term memory (LSTM), and ensemble trees. We found that data cleaning and clustering were critical for improving the performance in all models.


2018 ◽  
Vol 34 (3) ◽  
pp. 569-581 ◽  
Author(s):  
Sujata Rani ◽  
Parteek Kumar

Abstract In this article, an innovative approach to perform the sentiment analysis (SA) has been presented. The proposed system handles the issues of Romanized or abbreviated text and spelling variations in the text to perform the sentiment analysis. The training data set of 3,000 movie reviews and tweets has been manually labeled by native speakers of Hindi in three classes, i.e. positive, negative, and neutral. The system uses WEKA (Waikato Environment for Knowledge Analysis) tool to convert these string data into numerical matrices and applies three machine learning techniques, i.e. Naive Bayes (NB), J48, and support vector machine (SVM). The proposed system has been tested on 100 movie reviews and tweets, and it has been observed that SVM has performed best in comparison to other classifiers, and it has an accuracy of 68% for movie reviews and 82% in case of tweets. The results of the proposed system are very promising and can be used in emerging applications like SA of product reviews and social media analysis. Additionally, the proposed system can be used in other cultural/social benefits like predicting/fighting human riots.


Author(s):  
A. Hanel ◽  
H. Klöden ◽  
L. Hoegner ◽  
U. Stilla

Today, cameras mounted in vehicles are used to observe the driver as well as the objects around a vehicle. In this article, an outline of a concept for image based recognition of dynamic traffic situations is shown. A dynamic traffic situation will be described by road users and their intentions. Images will be taken by a vehicle fleet and aggregated on a server. On these images, new strategies for machine learning will be applied iteratively when new data has arrived on the server. The results of the learning process will be models describing the traffic situation and will be transmitted back to the recording vehicles. The recognition will be performed as a standalone function in the vehicles and will use the received models. It can be expected, that this method can make the detection and classification of objects around the vehicles more reliable. In addition, the prediction of their actions for the next seconds should be possible. As one example how this concept is used, a method to recognize the illumination situation of a traffic scene is described. This allows to handle different appearances of objects depending on the illumination of the scene. Different illumination classes will be defined to distinguish different illumination situations. Intensity based features are extracted from the images and used by a classifier to assign an image to an illumination class. This method is being tested for a real data set of daytime and nighttime images. It can be shown, that the illumination class can be classified correctly for more than 80% of the images.


2021 ◽  
Author(s):  
Sophie Goliber ◽  
Taryn Black ◽  
Ginny Catania ◽  
James M. Lea ◽  
Helene Olsen ◽  
...  

Abstract. Marine-terminating outlet glacier terminus traces, mapped from satellite and aerial imagery, have been used extensively in understanding how outlet glaciers adjust to climate change variability over a range of time scales. Numerous studies have digitized termini manually, but this process is labor-intensive, and no consistent approach exists. A lack of coordination leads to duplication of efforts, particularly for Greenland, which is a major scientific research focus. At the same time, machine learning techniques are rapidly making progress in their ability to automate accurate extraction of glacier termini, with promising developments across a number of optical and SAR satellite sensors. These techniques rely on high quality, manually digitized terminus traces to be used as training data for robust automatic traces. Here we present a database of manually digitized terminus traces for machine learning and scientific applications. These data have been collected, cleaned, assigned with appropriate metadata including image scenes, and compiled so they can be easily accessed by scientists. The TermPicks data set includes 39,060 individual terminus traces for 278 glaciers with a mean and median number of traces per glacier of 136 ± 190 and 93, respectively. Across all glaciers, 32,567 dates have been picked, of which 4,467 have traces from more than one author (duplication of 14 %). We find a median error of ∼100 m among manually-traced termini. Most traces are obtained after 1999, when Landsat 7 was launched. We also provide an overview of an updated version of The Google Earth Engine Digitization Tool (GEEDiT), which has been developed specifically for future manual picking of the Greenland Ice Sheet.


2020 ◽  
pp. 214-244
Author(s):  
Prithish Banerjee ◽  
Mark Vere Culp ◽  
Kenneth Jospeh Ryan ◽  
George Michailidis

This chapter presents some popular graph-based semi-supervised approaches. These techniques apply to classification and regression problems and can be extended to big data problems using recently developed anchor graph enhancements. The background necessary for understanding this Chapter includes linear algebra and optimization. No prior knowledge in methods of machine learning is necessary. An empirical demonstration of the techniques for these methods is also provided on real data set benchmarks.


Sign in / Sign up

Export Citation Format

Share Document