P-wave velocity profile at very shallow depths in sand dunes

Geophysics ◽  
2020 ◽  
Vol 85 (5) ◽  
pp. U129-U137
Author(s):  
Sherif M. Hanafy ◽  
Ammar El-Husseiny ◽  
Mohammed Benaafi ◽  
Abdullatif Al-Shuhail ◽  
Jack Dvorkin

We have addressed the problem of measuring the compressional wave velocity at a very shallow depth in unconsolidated dune sand. Because the overburden stress is very small at shallow depths, the respective velocity is small and the seismic signal is weak. This is why such data are scarce, in the lab and in the field. Our approach is to stage a high-resolution seismic experiment with a dense geophone line with spacing varying between 10 and 25 cm, allowing us to produce a velocity-depth relation in the upper 1 m interval. These results are combined with another survey in which the geophone spacing is 2 m and the dominant frequency is an order of magnitude lower than in the first survey. The latter results give us the velocity profile in the deeper interval between 1 and 7 m, down to the base of the dune. The velocity rapidly increases from about 48 m/s in the first few centimeters to 231 m/s at 1 m depth and then gradually increases to 425 m/s at 7 m depth. This is the first time when such a low velocity has been recorded at extremely shallow depths in sand in situ. The velocity profile thus generated is statistically fitted with a simple analytical equation. Our velocity values are higher than those published previously for beach sand. We find that using replacement or tomogram velocities instead of an accurately measured velocity profile may result in 23%–44% error in the static correction.

2019 ◽  
Vol 2 (2) ◽  
pp. 61-66
Author(s):  
Ahmad Fauzi Pohan ◽  
Rusnoviandi Rusnoviandi

Aktivitas gunung lumpur Bledug Kuwu di Jawa  Tengah merupakan fenomena yang menarik dikaji menggunakan pemodelan fisis. Tujuan penelitian ini adalah mengetahui parameter dari medium gunung lumpur Bledug Kuwu. Adapun pemodelan fisis yang dilakukan dengan menggunakan media fisis akuarium berukuran 59 × 59 × 37,3 cm yang diisi material dari lumpur Bledug Kuwu. Sumber letusan dihasilkan dari tekanan kompresor yang dapat diatur kedalaman (10.5, 13, dan 15.5 cm) dan sudut (30o, 45o dan 60o) sumbernya. Sensor yang digunakan geophone komponen vertikal sebanyak 3 buah dengan durasi perekaman selama 5 dan 2,5 detik. Data diambil dengan frekuensi sampel 2 dan 4 kHz untuk masing-masing durasi perekaman. Konfigurasi sumber dan geophone dibuat sesuai dengan pemodelan fisisnya. Pengukuran desnsitas lumpur menunjukkan angka sebesar 1200 kg/m3. Berdasarkan hasil analisis seismogram model fisis diperoleh kecepatan perambatan gelombang-P pada medium lumpur Bledug Kuwu adalah sebesar 48,74 m/s,dan gelombang-S sebesar 28,14 m/s dengan frekuensi dominan antara 20 sampai 25 Hz.   Bledug Kuwu mud volcano activity in Central Java is an interesting phenomenon to be studied using both physical  modeling. The objective of this study was to determine the physical parameters of the medium of Bledug Kuwu. The Physical model was an aquarium with a dimension of 59 × 59 × 37.3 cm filled with Bledug Kuwu’s mud. The eruption source is generated by a compressor pressure that can be controled both the depth(10.5, 13, and 15.5 cm) and the angel of the source (30o, 45o and 60o). The resulting seismic signals were recorded by using 3 vertical component geophones for 10 and 5 seconds durations at a frequency of 2 and 4 kHz respectivel, mud density 1200 kg/m3 . The physical modeling shows that the P-wave velocity of the Bledug Kuwu’s medium is 48.7 m/s, S-wave velocity of Bledug Kuwu’s is 28,14 m/s  with a dominant frequency of 20 to 25 Hz.


Geophysics ◽  
1995 ◽  
Vol 60 (6) ◽  
pp. 1627-1633 ◽  
Author(s):  
Bart W. Tichelaar ◽  
Klaas W. van Luik

Borehole sonic waveforms are commonly acquired to produce logs of subsurface compressional and shear wave velocities. To this purpose, modern borehole sonic tools are usually equipped with various types of acoustic sources, i.e., monopole and dipole sources. While the dipole source has been specifically developed for measuring shear wave velocities, we found that the dipole source has an advantage over the monopole source when determining compressional wave velocities in a very slow formation consisting of unconsolidated sands with a porosity of about 35% and a shear wave velocity of about 465 m/s. In this formation, the recorded compressional refracted waves suffer from interference with another wavefield component identified as a leaky P‐wave, which hampers the determination of compressional wave velocities in the sands. For the dipole source, separation of the compressional refracted wave from the recorded waveforms is accomplished through bandpass filtering since the wavefield components appear as two distinctly separate contributions to the frequency spectrum: a compressional refracted wave centered at a frequency of 6.5 kHz and a leaky P‐wave centered at 1.3 kHz. For the monopole source, the frequency spectra of the various waveform components have considerable overlap. It is therefore not obvious what passband to choose to separate the compressional refracted wave from the monopole waveforms. The compressional wave velocity obtained for the sands from the dipole compressional refracted wave is about 2150 m/s. Phase velocities obtained for the dispersive leaky P‐wave excited by the dipole source range from 1800 m/s at 1.0 kHz to 1630 m/s at 1.6 kHz. It appears that the dipole source has an advantage over the monopole source for the data recorded in this very slow formation when separating the compressional refracted wave from the recorded waveforms to determine formation compressional wave velocities.


2018 ◽  
pp. 267-283
Author(s):  
Ronald T. Marple ◽  
James D. Hurd, Jr. ◽  
Lanbo Liu ◽  
Seth Travis ◽  
Robert J. Altamura

High-resolution LiDAR (light detection and ranging) images of northeastern Massachusetts and southeastern New Hampshire reveal a 10-km-long, NW-SE-oriented topographic lineament in northeastern Massachusetts that we interpret to be the surface expression of a SW-dipping thrust fault along which the 1727 Newbury, Massachusetts, earthquake occurred. The Newburyport lineament coincides with the northeast edge of a 10-kmlong, NW-SE-oriented ridge, herein named Merrimack ridge, that parallels the NW-SE-trending segment of the Merrimack River downstream from where it bends 90° to the southeast. The northwestern end of the Newburyport lineament coincides with a 1-km-long, ~7- to 15-m-high, NE-facing Newburyport scarp that is located just south of the bend in the river. The Newburyport lineament also parallels the NW-SE-oriented nodal planes of the focal mechanism that was generated for the 1999 Amesbury, Massachusetts, earthquake. A P-wave velocity tomographic model generated from a seismic-refraction profile across the Newburyport scarp shows a ~40-m-wide low-velocity zone dipping ~41° SW. Velocities along this zone decrease 15–50%, which suggests that the Newburyport lineament is associated with the surface expression of a SW-dipping brittle fault zone. The LiDAR images also revealed three other NW-SE-trending lineaments in the study area.


2020 ◽  
Author(s):  
S. Hanafy ◽  
A. El-Husseiny ◽  
M. Benaafi ◽  
A. Al-Shuhail ◽  
J. Dvorkin

1979 ◽  
Vol 69 (6) ◽  
pp. 1733-1744
Author(s):  
George A. McMechan

abstract A P-wave velocity profile for the upper mantle at depths between 200 and 800 km beneath Eastern United States has been constructed from a combination of data from natural and artificial sources. Data for this part of the upper mantle are scarce, particularly beyond 20° epicentral distance, because of the sparse distribution of relevant sources and stations. Nevertheless, this study is the first to use amplitude constraints in a model determination for this region, and the model that has been chosen can account for the main observed amplitude features as well as travel times. The resulting velocity profile is similar to those previously determined for the regions to the north and west, but has a broadening of velocity transitions relative to those in the western United States. Evidence is found for the existence of lateral velocity inhomogeneity within the mantle.


1997 ◽  
Vol 40 (1) ◽  
Author(s):  
B. Alessandrini ◽  
L. Beranzoli ◽  
G. Drakatos ◽  
C. Falcone ◽  
G. Karantonis ◽  
...  

We present a tomographic view of the crust and uppermost mantle beneath the Central Mediterranean area obtained from P-wave arrival times of regional earthquakes selected from the ISC bulletin. The P-wave velocity anomalies are obtained using Thurber's algorithm that jointly relocates earthquakes and computes velocity adjustments with respect to a starting model. A specific algorithm has been applied to achieve a distribution of epicentres as even as possible. A data set of 1009 events and 49072 Pg and Pn phases was selected. We find a low velocity belt in the crust, evident in the map view at 25 km of depth, beneath the Hellenic arc. A low velocity anomaly extends at 40 km of depth under the Aegean back arc basin. High velocities are present at Moho depth beneath the Ionian sea close to the Calabrian and Aegean arcs. The tomographic images suggest a close relationship between P-wave velocity pattern and the subduction systems of the studied area.


Sign in / Sign up

Export Citation Format

Share Document