A GIS-based cost effective evacuation solution to reduce flash flood disaster losses in Fujairah, United Arab Emirates

2020 ◽  
Author(s):  
Salem Issa* ◽  
Sumayya Al Khanbouli ◽  
Nazmi Saleous
2021 ◽  
Vol 13 (9) ◽  
pp. 1818
Author(s):  
Lisha Ding ◽  
Lei Ma ◽  
Longguo Li ◽  
Chao Liu ◽  
Naiwen Li ◽  
...  

Flash floods are among the most dangerous natural disasters. As climate change and urbanization advance, an increasing number of people are at risk of flash floods. The application of remote sensing and geographic information system (GIS) technologies in the study of flash floods has increased significantly over the last 20 years. In this paper, more than 200 articles published in the last 20 years are summarized and analyzed. First, a visualization analysis of the literature is performed, including a keyword co-occurrence analysis, time zone chart analysis, keyword burst analysis, and literature co-citation analysis. Then, the application of remote sensing and GIS technologies to flash flood disasters is analyzed in terms of aspects such as flash flood forecasting, flash flood disaster impact assessments, flash flood susceptibility analyses, flash flood risk assessments, and the identification of flash flood disaster risk areas. Finally, the current research status is summarized, and the orientation of future research is also discussed.


2018 ◽  
Author(s):  
Youssef Wehbe ◽  
Marouane Temimi ◽  
Michael Weston ◽  
Naira Chaouch ◽  
Oliver Branch ◽  
...  

Abstract. This study investigates an extreme weather event that impacted the United Arab Emirates (UAE) in March 2016 using the Weather Research and Forecasting (WRF) model version 3.7.1 coupled with its hydrological modeling extension package (Hydro). Six-hourly forecasted forcing records at 0.5o spatial resolution, obtained from the NCEP Global Forecast System (GFS), are used to drive the three nested downscaling domains of both standalone WRF and coupled WRF/WRF-Hydro configurations for the recent flood-triggering storm. Ground and satellite observations over the UAE are employed to validate the model results. Precipitation, soil moisture, and cloud fraction retrievals from GPM (30-minute, 0.1o product), AMSR2 (daily, 0.1o product), and MODIS (daily, 5 km product), respectively, are used to assess the model output. The Pearson correlation coefficient (PCC), relative bias (rBIAS) and root-mean-square error (RMSE) are used as performance measures. Results show reductions of 24 % and 13 % in RMSE and rBIAS measures, respectively, in precipitation forecasts from the coupled WRF/WRF-Hydro model configuration, when compared to standalone WRF. The coupled system also shows improvements in global radiation forecasts, with reductions of 45 % and 12 % for RMSE and rBIAS, respectively. Moreover, WRF-Hydro was able to simulate the spatial distribution of soil moisture reasonably well across the study domain when compared to AMSR2 satellite soil moisture estimates, despite a noticeable dry/wet bias in areas where soil moisture is high/low. The demonstrated improvement, at the local scale, implies that WRF-Hydro coupling may enhance hydrologic forecasts and flash flood guidance systems in the region.


2019 ◽  
Vol 33 ◽  
pp. 290-309 ◽  
Author(s):  
M. Diakakis ◽  
E. Andreadakis ◽  
E.I. Nikolopoulos ◽  
N.I. Spyrou ◽  
M.E. Gogou ◽  
...  

Proceedings ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 25
Author(s):  
Weiwei Shao ◽  
Yuanfei Li ◽  
Dianyi Yan ◽  
Jiahong Liu ◽  
Zhiyong Yang ◽  
...  

China is in a period of rapid urbanization. Due to the high concentration of population and industries, the loss due to flood and waterlogging is becoming more and more serious. Therefore, it is of great significance to strengthen the analysis and evaluation of the losses due to flood and waterlogging disasters in China for the recent years. This study analyzed the losses caused by flood and waterlogging disasters in China from 2006 to 2017. The results showed that the most serious year affected by floods and waterlogging was 2010. However, the relationship between rainfall and flood disaster losses was not significant, which may be because the occurrence of flood disasters is caused by many factors. The spatial distribution showed that the eastern and southern parts of China suffered greater losses from the flood and waterlogging disasters because these areas are more vulnerable to floods and waterlogging disasters under the impact of both monsoons and typhoons. This study hopes to provide some reference for flood disaster control and disaster mitigation in the future.


2008 ◽  
Vol 14 (4) ◽  
pp. 296-299
Author(s):  
Shuyou Cao ◽  
Xingnian Liu ◽  
Er Huang ◽  
Kejun Yang
Keyword(s):  

1991 ◽  
Vol 7 (4) ◽  
pp. 365-371 ◽  
Author(s):  
P. Duclos ◽  
O. Vidonne ◽  
P. Beuf ◽  
P. Perray ◽  
A. Stoebner
Keyword(s):  

Eos ◽  
2001 ◽  
Vol 82 (47) ◽  
pp. 572-572 ◽  
Author(s):  
M. C. Larsen ◽  
G. F. Wieczorek ◽  
L. S. Eaton ◽  
B. A. Morgan ◽  
H. Torres-Sierra

Sign in / Sign up

Export Citation Format

Share Document