Seal potential of shale sequences through seismic anisotropy: Case study from Exmouth Sub-basin, Australia

2015 ◽  
Vol 3 (4) ◽  
pp. T257-T267 ◽  
Author(s):  
Hadi Nourollah ◽  
Milovan Urosevic ◽  
Jeffrey Keetley

Sedimentary rocks with sealing potential can cap a reservoir by impeding the upward movement of hydrocarbons. An effective seal should have three qualifying factors of geometry, integrity, and capacity. Mapping seismic horizons and faults across the area of study reveals much about the geometry and integrity of the sealing unit. Capacity, however, depends on capillary pressure measurements of core and cuttings samples. Modeling capacity of seals away from and between wells has traditionally involved simple gridding techniques or association with most likely geologic or seismic facies. We have developed a different approach in using seismic data and applying it to the evaluation of sealing potential. Shales are the most common seals in petroleum systems. Seismically, well-developed shale units that have undergone compaction are likely to be anisotropic and are typical vertical transverse isotropic media. Seismic data with suitable acquisition parameters were processed to extract [Formula: see text] and Thomsen’s parameters of weak seismic anisotropy, tied to the vertical seismic profile data at wells. The spatial distribution of [Formula: see text] has shown a good correlation with capillary measurements of well samples. Hence, 3D modeling of epsilon was used as a weight factor to guide the capillary pressure ([Formula: see text]) values away from the wells. Capillary pressure values were then mapped on the fault planes to high grade the analysis of sand-shale juxtaposition. Our results helped to explain the distribution of successful wells and dry holes within the study area.

Geophysics ◽  
1996 ◽  
Vol 61 (2) ◽  
pp. 456-466 ◽  
Author(s):  
Wallace E. Beckham

A multicomponent vertical seismic profile (VSP), cross‐dipole shear‐wave log, formation micro imaging (FMI) log, and oriented core were obtained in the Brady Ranch 1–5 well, Carter County, Oklahoma in November 1992. The intent was to study the properties of fractured intervals and the response of the seismic data with respect to fracture orientation. The primary zones of interest were the Sycamore and Hunton carbonates. A full nine‐component VSP was obtained from 152 to 3010 m. Data from a cross‐dipole shear‐wave log were obtained primarily in the deep carbonates at 2600–2900 m. The VSP and cross‐dipole data gave estimates of the orientation of azimuthal anisotropy in the section, and indicate three changes in the orientation of azimuthal anisotropy with depth. An east‐northeast orientation was obtained in the deepest zone, which includes the carbonate interval. The cross‐dipole data indicate anisotropy having east‐northeast, east‐south‐east, and approximately north‐south orientations in this zone. The cross‐dipole tool may be responding to small scale microcracks, which may have more random orientations than the larger scale macrofractures. FMI log data and oriented core, also obtained in the deep carbonate section, indicate macrofractures oriented in east‐northeast and east‐southeast directions.


Author(s):  
A. Livsey

South Sumatra is considered a mature exploration area, with over 2500MMbbls of oil and 9.5TCF of gas produced. However a recent large gas discovery in the Kali Berau Dalam-2 well in this basin, highlights that significant new reserve additions can still be made in these areas by the re-evaluation of the regional petroleum systems, both by identification of new plays or extension of plays to unexplored areas. In many mature areas the exploration and concession award history often results in successively more focused exploration programmes in smaller areas. This can lead to an increased emphasis on reservoir and trap delineation without further evaluation of the regional petroleum systems and, in particular, the hydrocarbon charge component. The Tungkal PSC area is a good example of an area that has undergone a long exploration history involving numerous operators with successive focus on block scale petroleum geology at the expense of the more regional controls on hydrocarbon prospectivity. An improved understanding of hydrocarbon accumulation in the Tungkal PSC required both using regional petroleum systems analysis and hydrocarbon charge modelling. While the Tungkal PSC operators had acquired high quality seismic data and drilled a number of wells, these were mainly focused on improving production from the existing field (Mengoepeh). More recent exploration-driven work highlighted the need for a new look at the hydrocarbon charge history but it was clear that little work had been done in the past few year to better understand exploration risk. This paper summarises the methodology employed and the results obtained, from a study, carried out in 2014-15, to better understand hydrocarbon accumulation within the current Tungkal PSC area. It has involved integration of available well and seismic data from the current and historical PSC area with published regional paleogeographic models, regional surface geology and structure maps, together with a regional oil generation model. This approach has allowed a better understanding of the genesis of the discovered hydrocarbons and identification of areas for future exploration interest.


2020 ◽  
Vol 38 (2) ◽  
Author(s):  
Razec Cezar Sampaio Pinto da Silva Torres ◽  
Leandro Di Bartolo

ABSTRACT. Reverse time migration (RTM) is one of the most powerful methods used to generate images of the subsurface. The RTM was proposed in the early 1980s, but only recently it has been routinely used in exploratory projects involving complex geology – Brazilian pre-salt, for example. Because the method uses the two-way wave equation, RTM is able to correctly image any kind of geological environment (simple or complex), including those with anisotropy. On the other hand, RTM is computationally expensive and requires the use of computer clusters. This paper proposes to investigate the influence of anisotropy on seismic imaging through the application of RTM for tilted transversely isotropic (TTI) media in pre-stack synthetic data. This work presents in detail how to implement RTM for TTI media, addressing the main issues and specific details, e.g., the computational resources required. A couple of simple models results are presented, including the application to a BP TTI 2007 benchmark model.Keywords: finite differences, wave numerical modeling, seismic anisotropy. Migração reversa no tempo em meios transversalmente isotrópicos inclinadosRESUMO. A migração reversa no tempo (RTM) é um dos mais poderosos métodos utilizados para gerar imagens da subsuperfície. A RTM foi proposta no início da década de 80, mas apenas recentemente tem sido rotineiramente utilizada em projetos exploratórios envolvendo geologia complexa, em especial no pré-sal brasileiro. Por ser um método que utiliza a equação completa da onda, qualquer configuração do meio geológico pode ser corretamente tratada, em especial na presença de anisotropia. Por outro lado, a RTM é dispendiosa computacionalmente e requer o uso de clusters de computadores por parte da indústria. Este artigo apresenta em detalhes uma implementação da RTM para meios transversalmente isotrópicos inclinados (TTI), abordando as principais dificuldades na sua implementação, além dos recursos computacionais exigidos. O algoritmo desenvolvido é aplicado a casos simples e a um benchmark padrão, conhecido como BP TTI 2007.Palavras-chave: diferenças finitas, modelagem numérica de ondas, anisotropia sísmica.


Geophysics ◽  
2016 ◽  
Vol 81 (5) ◽  
pp. C177-C191 ◽  
Author(s):  
Yunyue Li ◽  
Biondo Biondi ◽  
Robert Clapp ◽  
Dave Nichols

Seismic anisotropy plays an important role in structural imaging and lithologic interpretation. However, anisotropic model building is a challenging underdetermined inverse problem. It is well-understood that single component pressure wave seismic data recorded on the upper surface are insufficient to resolve a unique solution for velocity and anisotropy parameters. To overcome the limitations of seismic data, we have developed an integrated model building scheme based on Bayesian inference to consider seismic data, geologic information, and rock-physics knowledge simultaneously. We have performed the prestack seismic inversion using wave-equation migration velocity analysis (WEMVA) for vertical transverse isotropic (VTI) models. This image-space method enabled automatic geologic interpretation. We have integrated the geologic information as spatial model correlations, applied on each parameter individually. We integrate the rock-physics information as lithologic model correlations, bringing additional information, so that the parameters weakly constrained by seismic are updated as well as the strongly constrained parameters. The constraints provided by the additional information help the inversion converge faster, mitigate the ambiguities among the parameters, and yield VTI models that were consistent with the underlying geologic and lithologic assumptions. We have developed the theoretical framework for the proposed integrated WEMVA for VTI models and determined the added information contained in the regularization terms, especially the rock-physics constraints.


2021 ◽  
Author(s):  
Anthony Aming

Abstract See how application of a fully trained Artificial Intelligence (AI) / Machine Learning (ML) technology applied to 3D seismic data volumes delivers an unbiased data driven assessment of entire volumes or corporate seismic data libraries quickly. Whether the analysis is undertaken using onsite hardware or a cloud based mega cluster, this automated approach provides unparalleled insights for the interpretation and prospectivity analysis of any dataset. The Artificial Intelligence (AI) / Machine Learning (ML) technology uses unsupervised genetics algorithms to create families of waveforms, called GeoPopulations, that are used to derive Amplitude, Structure (time or depth depending on the input 3D seismic volume) and the new seismic Fitness attribute. We will show how Fitness is used to interpret paleo geomorphology and facies maps for every peak, trough and zero crossing of the 3D seismic volume. Using the Structure, Amplitude and Fitness attribute maps created for every peak, trough and zero crossing the Exploration and Production (E&P) team can evaluate and mitigate Geological and Geophysical (G&G) risks and uncertainty associated with their petroleum systems quickly using the entire 3D seismic data volume.


2016 ◽  
Vol 4 (1) ◽  
pp. SA95-SA111 ◽  
Author(s):  
Tetsuya Fujii ◽  
Than Tin Aung ◽  
Naoya Wada ◽  
Yuhei Komatsu ◽  
Kiyofumi Suzuki ◽  
...  

We have performed 2D and 3D gas hydrate (GH) petroleum systems modeling for the Pleistocene turbiditic sedimentary sequences distributed in the Daini-Atsumi area in the eastern Nankai Trough to understand the accumulation mechanisms and their spatial distribution related to geologic and geochemical processes. High-resolution seismic facies analysis and interpretations were used to define facies distributions in the models. We have created a new biogenic methane generation model based on the biomarker analysis using core samples and incorporated it into our model. Our 2D models were built and simulated to confirm the parameters to be used for 3D modeling. Global sea level changes and paleogeometry estimated from 3D structural restoration results were taken into account to determine the paleowater depth of the deposited sedimentary sequences. Pressure and temperature distributions were modeled because they are the basic factors that control the GH stability zone. Our 2D modeling results suggested that the setting of biogenic methane generation depth is one of the most important controlling factors for GH accumulation in the Nankai Trough, which may be related to the timing of methane upward migration (expulsion) and methane solution process in pore water. Our 3D modeling results suggested that the distribution of sandy sediments and the formation dip direction are important controlling factors in the accumulation of GHs. We also found that the simulated amount of GH accumulation from the petroleum systems modeling compares well with independent estimations using 3D seismic and well data. This suggests that the model constructed in this study is valid for this GH system evaluation and that this type of evaluation can be useful as a supplemental approach to resource assessment.


2021 ◽  
Vol 10 (2) ◽  
pp. 33
Author(s):  
Yujuan Liu ◽  
Qianping Zhang ◽  
Bin Zheng ◽  
Jing Zhang ◽  
Zhaozhao Qu

The reservoir in different parts of buried-hill draping zone is often quite different, so it is of great significance to clarify the reservoir characteristics for exploration and development. Based on core, well logging, seismic data and production data, reservoir characteristics of oil layer Ⅱ in the lower second member of Dongying Formation of L oilfield, Bohai Bay Basin, offshore eastern China are systematically studied. Analyses of seismic facies, well-seismic combination, paleogeomorphology, and sedimentary characteristics are carried out. Sediment source supply, lake level and buried hill basement geomorphology all contribute to reservoir quality. The research suggests that the different parts of buried-hill draping zone can be divided into four types. Reservoir thickness and physical properties vary. The area where the provenance direction is consistent with the ancient valley direction is a favorable location for the development of high-quality reservoirs. Under the guidance of the results, oilfield production practices in L oilfield offshore China are successful. Knowledge gained from study of L oilfield has application to the development of other similar fields.


2016 ◽  
Vol 9 (1) ◽  
pp. 15
Author(s):  
Taufan Wiguna ◽  
Rahadian Rahadian ◽  
Sri Ardhyastuti ◽  
Safira Rahmah ◽  
Tati Zera

<p class="abstrak">Two dimension (2D) seismic profile of Baruna and Jaya lines at North-East Java Basin show seismic reflector characteristics that can be used to interpret sediment thickness and continuity. Those reflector characteristics that can be applied for seismic facies analysis that represent depositional environment. This study starts from seismic data processing that using Kirchhoff Post Stack Time Migration method which is 2D seismic profile as result. Seismic reflector characterization has been done to both 2D profiles. Seismic reflector characterization was grouped as (i) individual reflection, (ii) reflection  configuration, (iii) reflection termination, (iv) external form. Individual reflection characteristics show high and medium amplitude, medium and low frequency, and continuous. Configuration reflection is continuous with parallel and subparallel type. Reflection termination shows onlap, and external form shows sheet drape. Local mound appearance can be interpreted as paleo-reef. Facies seismic anlysis result for this study area is shelf.</p>


Geophysics ◽  
2001 ◽  
Vol 66 (1) ◽  
pp. 40-41 ◽  
Author(s):  
Leon Thomsen

The topic of seismic anisotropy in exploration and exploitation has seen a great deal of progress in the past decade‐and‐a‐half. The principal reason for this is the increased (and increasing) quality of seismic data, of the processing done to it, and of the interpretation expected from it. No longer an academic subject of little practical interest, it is now often viewed as one of the crucial factors which, if not taken into account, severely hampers our effective use of the data. The following brief overview is not intended to be exhaustive, since any such attempt would surely be incomplete. However, it does provide a high‐level survey of the advances seen (at the end of this period) to be important by one who was closely involved, and it directly extrapolates this history to predict the future development of the topic.


Sign in / Sign up

Export Citation Format

Share Document