Characterization of naturally fractured Arbuckle Group in the Wellington Field, Kansas, using S-wave amplitude variation with offset

2017 ◽  
Vol 5 (1) ◽  
pp. T49-T63 ◽  
Author(s):  
Menal Gupta ◽  
Kyle Spikes ◽  
Bob Hardage

S-wave amplitude variation with offset (AVO) analysis is sensitive to the presence of fractures and can provide a high-resolution seismic-based fracture characterization as compared with traditionally used traveltime-based methods. To determine viable attributes for estimation of properties such as spatial density and fluid fill of fractures, S-wave AVO modeling and analysis is carried out in the Wellington Field, Kansas, where 9C-2D seismic data have been acquired. Analysis is performed on the Ordovician fractured-carbonate interval called the Arbuckle Group, which is being considered for [Formula: see text] sequestration. AVO modeling of the Arbuckle interval indicates that differences in AVO intercepts of different S-wave polarizations can estimate S-wave anisotropy parameter [Formula: see text], which gives an estimate of fracture density. In addition, modeling suggests that AVO gradients of [Formula: see text] and [Formula: see text] waves can be used to derive a seismic attribute to discriminate fluid fill in fractures, provided good-quality S-wave gathers are available. The intercept anisotropy (IA) attribute obtained from AVO intercepts of S-waves provides fracture density estimates within the Arbuckle Group. These estimates are consistent with the field-wide, low-frequency observations from seismic velocities and spatially limited, high-frequency estimates obtained from drill cores and sonic and borehole-image logs. The IA attribute highlights possible high-permeability zones in the Upper and Lower Arbuckle suitable for [Formula: see text] injection. The Middle Arbuckle indicates low fracture density, potentially acting as a baffle to vertical flow and providing a seal for the Lower Arbuckle. The gradient anisotropy attribute obtained from the AVO gradient of S-waves suggests that most fractures in the Arbuckle are brine saturated. This attribute has a potential application in monitoring the movement of a [Formula: see text] plume in the Arbuckle Group when time-lapse data become available. These results demonstrate that S-wave AVO attributes can supplement the P-wave derived subsurface properties and significantly reduce uncertainties in subsurface fracture characterization.

2016 ◽  
Vol 4 (4) ◽  
pp. T613-T625 ◽  
Author(s):  
Qizhen Du ◽  
Bo Zhang ◽  
Xianjun Meng ◽  
Chengfeng Guo ◽  
Gang Chen ◽  
...  

Three-term amplitude-variation with offset (AVO) inversion generally suffers from instability when there is limited prior geologic or petrophysical constraints. Two-term AVO inversion shows higher instability compared with three-term AVO inversion. However, density, which is important in the fluid-type estimation, cannot be recovered from two-term AVO inversion. To reliably predict the P- and S-waves and density, we have developed a robust two-step joint PP- and PS-wave three-term AVO-inversion method. Our inversion workflow consists of two steps. The first step is to estimate the P- and S-wave reflectivities using Stewart’s joint two-term PP- and PS-AVO inversion. The second step is to treat the P-wave reflectivity obtained from the first step as the prior constraint to remove the P-wave velocity related-term from the three-term Aki-Richards PP-wave approximated reflection coefficient equation, and then the reduced PP-wave reflection coefficient equation is combined with the PS-wave reflection coefficient equation to estimate the S-wave and density reflectivities. We determined the effectiveness of our method by first applying it to synthetic models and then to field data. We also analyzed the condition number of the coefficient matrix to illustrate the stability of the proposed method. The estimated results using proposed method are superior to those obtained from three-term AVO inversion.


1966 ◽  
Vol 56 (1) ◽  
pp. 201-221
Author(s):  
Shuzo Asano

abstract The effect of a corrugated interface on wave propagation is considered by using the method that was first applied to acoustical gratings by Rayleigh. The problem is what happens when a plane P wave is incident on a corrugated interface that separates two semi-infinite media. As is well known, there are irregular (scattered) waves as well as regular waves. By assuming both the amplitude and the slope of a corrugated interface to be small, quantities of the order of the square of corrugation amplitude are taken into account. In the case of normal incidence for three models considered, the effect of corrugation on reflection is larger than the effect of corrugation on refraction; the amplitude of the regularly reflected waves decreases, and that of the regularly refracted waves and of the irregular waves increases, as the corrugation amplitude becomes larger. Generally, the larger the velocity contrast, the larger the variation of wave amplitude with the wavelength and the amplitude of corrugation. The S wave component generally becomes larger as the wavelength of corrugation becomes smaller. Boundary waves exist, depending upon the ratio of wavelength of corrugation to that of the incident wave. For a specified interface, it is possible that there is a significant difference in wave amplitude as a function of the elastic constants. In the case of oblique incidence, computation was carried out for angles of incidence smaller than 15° for one model. For these small angles of incidence, almost all results for the case of normal incidence still hold. Furthermore, it can be concluded that the effect of the angle of incidence on reflected S waves is larger than for the other waves and that large differences in the amplitudes of waves at different angles of incidence may be expected for the irregular waves.


Geophysics ◽  
2007 ◽  
Vol 72 (1) ◽  
pp. B1-B7 ◽  
Author(s):  
Abdullatif A. Al-Shuhail

Vertical aligned fractures can significantly enhance the horizontal permeability of a tight reservoir. Therefore, it is important to know the fracture porosity and direction in order to develop the reservoir efficiently. P-wave AVOA (amplitude variation with offset and azimuth) can be used to determine these fracture parameters. In this study, I present a method for inverting the fracture porosity from 2D P-wave seismic data. The method is based on a modeling result that shows that the anisotropic AVO (amplitude variation with offset) gradient is negative and linearly dependent on the fracture porosity in a gas-saturated reservoir, whereas the gradient is positive and linearly dependent on the fracture porosity in a liquid-saturated reservoir. This assumption is accurate as long as the crack aspect ratio is less than 0.1 and the ratio of the P-wave velocity to the S-wave velocity is greater than 1.8 — two conditions that are satisfied in most naturally fractured reservoirs. The inversion then uses the fracture strike, the crack aspect ratio, and the ratio of the P-wave velocity to the S-wave velocity to invert the fracture porosity from the anisotropic AVO gradient after inferring the fluid type from the sign of the anisotropic AVO gradient. When I applied this method to a seismic line from the oil-saturated zone of the fractured Austin Chalk of southeast Texas, I found that the inversion gave a median fracture porosity of 0.21%, which is within the fracture-porosity range commonly measured in cores from the Austin Chalk.


Geophysics ◽  
2011 ◽  
Vol 76 (3) ◽  
pp. S103-S113 ◽  
Author(s):  
Robert Sun ◽  
George A. McMechan ◽  
Han-Hsiang Chuang

The reflected P- and S-waves in elastic displacement component data recorded at the earth’s surface are separated by reverse-time (downward) extrapolation of the data in an elastic computational model, followed by calculations to give divergence (dilatation) and curl (rotation) at a selected reference depth. The surface data are then reconstructed by separate forward-time (upward) scalar extrapolations, from the reference depth, of the magnitude of the divergence and curl wavefields, and extraction of the separated P- and S-waves, respectively, at the top of the models. A P-wave amplitude will change by a factor that is inversely proportional to the P-velocity when it is transformed from displacement to divergence, and an S-wave amplitude will change by a factor that is inversely proportional to the S-velocity when it is transformed from displacement to curl. Consequently, the ratio of the P- to the S-wave amplitude (the P-S amplitude ratio) in the form of divergence and curl (postseparation) is different from that in the (preseparation) displacement form. This distortion can be eliminated by multiplying the separated S-wave (curl) by a relative balancing factor (which is the S- to P-velocity ratio); thus, the postseparation P-S amplitude ratio can be returned to that in the preseparation data. The absolute P- and S-wave amplitudes are also recoverable by multiplying them by a factor that depends on frequency, on the P-velocity α, and on the unit of α and is location-dependent if the near-surface P-velocity is not constant.


2012 ◽  
Vol 268-270 ◽  
pp. 1779-1782
Author(s):  
Hai Yan Zhang ◽  
Zi Li Liu

An improved artificial immune algorithm is proposed for geophysical P-wave amplitude variation with offset (AVO) inversion. In this paper, the algorithm is described and implemented. The orthogonal crossover is used to generate the initial population and the elitist-crossover is adopted to add the good patterns of the population. The hybrid mutation method is presented to increase the ability of local and global optimization. The improved immune algorithm is then applied to earth interface models of Mexican gulf for AVO inversion. The experimental results show that the improved algorithm is of high precision than the traditional immune algorithm.


Geophysics ◽  
2002 ◽  
Vol 67 (6) ◽  
pp. 1972-1982 ◽  
Author(s):  
Remco Muijs ◽  
Klaus Holliger ◽  
Johan O. A. Robertsson

Dense spatial recording patterns of three‐component (3C) receivers allow for direct wavefield decomposition through explicit calculation of divergence and curl of the recorded elastic wavefield. Since this approach is based upon the observation of small phase shifts, it requires highly accurate deployment of the receiver configurations. To study the feasibility of a recently proposed P/S‐wave separation scheme, we systematically assess the effects of position and orientation errors of one or several geophones within the recording pattern on technique performance. We find that realistic deployment errors can significantly affect estimates of the divergence and curl of particle velocity. The errors induced by mispositioned or misoriented geophones differ for each of the geophones that make up a pattern. Moreover, the inaccuracies vary with the angle of incidence, potentially affecting analysis procedures applied to the data at a later stage, such as amplitude variation with offset (AVO). Based on a relative L1‐criterion, the position of each receiver needs to be accurate within 10% of the length of the sides of the configuration to obtain meaningful divergence and curl estimates. Furthermore, the output is particularly sensitive to misorientations of geophones, requiring that the orientations of all geophones be accurate within 2°. These observations point to significant difficulties when applying this technique. To alleviate this problem, we present an approach to detect and compensate for such deployment‐related inaccuracies prior to explicit P/S‐wave separation. This strategy is based on a pyramid‐shaped receiver configuration and relies on minimizing the differences between the divergence and curl estimates calculated over the pyramid and each of the four subtetrahedra that comprise the pyramid.


Geophysics ◽  
2003 ◽  
Vol 68 (4) ◽  
pp. 1150-1160 ◽  
Author(s):  
Stephen A. Hall ◽  
J‐Michael Kendall

The delineation and characterization of fracturing is important in the successful exploitation of many hydrocarbon reservoirs. Such fracturing often occurs in preferentially aligned sets; if the fractures are of subseismic scale, this may result in seismic anisotropy. Thus, measurements of anisotropy from seismic data may be used to delineate fracture patterns and investigate their properties. Here fracture‐induced anisotropy is investigated in the Valhall field, which lies in the Norwegian sector of the North Sea. This field is a chalk reservoir with good porosity but variable permeability, where fractures may significantly impact production, e.g., during waterflooding. To investigate the nature of fracturing in this reservoir, P‐wave amplitude variation with offset and azimuth (AVOA) is analyzed in a 3D ocean‐bottom cable (OBC) data set. In general, 3D ocean‐bottom seismic (OBS) acquisition leads to patchy coverage in offset and azimuth, and this must be addressed when considering such data. To overcome this challenge and others associated with 3D OBS acquisition, a new method for processing and analysis is presented. For example, a surface fitting approach, which involves analyzing azimuthal variations in AVO gradients, is used to estimate the orientation and magnitude of the fracture‐induced anisotropy. This approach is also more widely applicable to offset‐azimuth analysis of other attributes (e.g., traveltimes) and any data set where there has been true 3D data acquisition, land or marine. Using this new methodology, we derive high‐resolution maps of P‐wave anisotropy from the AVOA analysis for the top‐chalk reflection at Valhall. These anisotropy maps show coherent but laterally varying trends. Synthetic AVOA modeling, using effective medium models, indicates that if this anisotropy is from aligned fracturing, the fractures are likely liquid filled with small aspect ratios and the fracture density must be high. Furthermore, we show that the fracture‐normal direction is parallel to the direction of most positive AVO gradient. In other situations the reverse can be true, i.e., the fracture‐normal direction can be parallel to the direction of the most negative AVO gradient. Effective medium modeling or comparisons with anisotropy estimates from other approaches (e.g., azimuthal variations in velocity) must therefore be used to resolve this ambiguity. The inferred fracture orientations and anisotropy magnitudes show a degree of correlation with the positions and alignments of larger scale faults, which are estimated from 3D coherency analysis. Overall, this work demonstrates that significant insight may be gained into the alignment and character of fracturing and the stress field variations throughout a field using this high‐resolution AVOA method.


Geophysics ◽  
2015 ◽  
Vol 80 (1) ◽  
pp. C21-C35 ◽  
Author(s):  
Faranak Mahmoudian ◽  
Gary F. Margrave ◽  
Joe Wong ◽  
David C. Henley

We evaluated a quantitative amplitude analysis of 3D physical model reflection data acquired over an experimental phenolic layer that modeled a fractured medium with one set of vertical fractures. The phenolic layer was overlain by two isotropic layers, the uppermost being water, and the data acquisition was designed to avoid the interference of the primary and ghost events. The elastic stiffness coefficients and hence the anisotropy of the phenolic layer were known in advance from a previous traveltime analysis. The reflection amplitudes from the top of the phenolic layer required corrections to make them suitable for an amplitude study. In addition to the usual amplitude corrections applied to seismic field data, a directivity correction specific to the physical model transducers was applied. The corrected amplitudes along different azimuths showed a clear azimuthal variation caused by the phenolic layer and agreed with amplitudes predicted theoretically. An amplitude variation with angle and azimuth inversion was performed for horizontal transverse isotropy (HTI) parameters of the phenolic layer. We determined from the inversion results that from the azimuthally varying P-wave reflectivity response, it was possible to estimate HTI parameters that compared favorably to those obtained previously by a traveltime analysis. This result made it possible to compute the S-wave splitting parameter [Formula: see text] (historically determined from S-wave data and directly related to fracture density) from a quantitative analysis of the PP data.


Geophysics ◽  
2016 ◽  
Vol 81 (3) ◽  
pp. D283-D291 ◽  
Author(s):  
Peng Liu ◽  
Wenxiao Qiao ◽  
Xiaohua Che ◽  
Xiaodong Ju ◽  
Junqiang Lu ◽  
...  

We have developed a new 3D acoustic logging tool (3DAC). To examine the azimuthal resolution of 3DAC, we have evaluated a 3D finite-difference time-domain model to simulate a case in which the borehole penetrated a rock formation boundary when the tool worked at the azimuthal-transmitting-azimuthal-receiving mode. The results indicated that there were two types of P-waves with different slowness in waveforms: the P-wave of the harder rock (P1) and the P-wave of the softer rock (P2). The P1-wave can be observed in each azimuthal receiver, but the P2-wave appears only in the azimuthal receivers toward the softer rock. When these two types of rock are both fast formations, two types of S-waves also exist, and they have better azimuthal sensitivity compared with P-waves. The S-wave of the harder rock (S1) appears only in receivers toward the harder rock, and the S-wave of the softer rock (S2) appears only in receivers toward the softer rock. A model was simulated in which the boundary between shale and sand penetrated the borehole but not the borehole axis. The P-wave of shale and the S-wave of sand are azimuthally sensitive to the azimuth angle variation of two formations. In addition, waveforms obtained from 3DAC working at the monopole-transmitting-azimuthal-receiving mode indicate that the corresponding P-waves and S-waves are azimuthally sensitive, too. Finally, we have developed a field example of 3DAC to support our simulation results: The azimuthal variation of the P-wave slowness was observed and can thus be used to reflect the azimuthal heterogeneity of formations.


Geophysics ◽  
1997 ◽  
Vol 62 (5) ◽  
pp. 1365-1368
Author(s):  
M. Boulfoul ◽  
Doyle R. Watts

The petroleum exploration industry uses S‐wave vertical seismic profiling (VSP) to determine S‐wave velocities from downgoing direct arrivals, and S‐wave reflectivities from upgoing waves. Seismic models for quantitative calibration of amplitude variation with offset (AVO) data require S‐wave velocity profiles (Castagna et al., 1993). Vertical summations (Hardage, 1983) of the upgoing waves produce S‐wave composite traces and enable interpretation of S‐wave seismic profile sections. In the simplest application of amplitude anomalies, the coincidence of high amplitude P‐wave reflectivity and low amplitude S‐wave reflectivity is potentially a direct indicator of the presence of natural gas.


Sign in / Sign up

Export Citation Format

Share Document