Petroleum system of Miocene troughs of the Pannonian Basin in southern Hungary, based on 3D basin modeling

2018 ◽  
Vol 6 (1) ◽  
pp. SB37-SB50 ◽  
Author(s):  
Viktor Lemberkovics ◽  
Edina Kissné Pável ◽  
Balázs Badics ◽  
Katalin Lőrincz ◽  
Alexander Rodionov ◽  
...  

The role of the Middle-Upper Miocene source rocks in the Late Neogene petroleum system of the Pannonian Basin is undoubtedly significant, but it is not entirely understood. Only a few general publications exist that describe these sediments and their importance. We have focused on understanding the Neogene tectono-stratigraphic development and petroleum systems of these relatively small syn-rift grabens in southern Hungary. We have developed a workflow for organic geochemical, seismic, and facies interpretation; basin subsidence; and 3D basin modeling to better understand the Miocene-Pliocene-age petroleum system in a [Formula: see text] study area. This area fully covers two small-scale (less than [Formula: see text] size each) troughs filled by syn-rift and postrift deposits in large thickness with significantly different structural histories. During our investigation, six source rock beds were identified and built into the model. Thousands of meters of Lower Miocene, (Karpatian age) sediment accumulated in a “pull-apart,” but later structurally inverted Kiskunhalas Trough in the south, where four moderate- to good-quality (2 wt% estimated original total organic carbon [TOC], 200 HI), dominantly gas-prone, immature to wet gas mature source rock beds were identified. In the overlying Middle Miocene (Badenian age) sediments, generally good quality (2 wt% estimated original [TOC], 300–500 HI, type II and II-S), oil-prone, dominantly oil mature source bed was identified. This layer, as the regional Miocene source rock, is mainly responsible for the known hydrocarbon (HC) accumulations. The 3D basin and petroleum system modeling helped us understand the HC migration into the already-discovered fields as well as identify possible future exploration objects.

2019 ◽  
Vol 27 (1) ◽  
pp. petgeo2019-050
Author(s):  
Tesfamariam Berhane Abay ◽  
Katrine Fossum ◽  
Dag Arild Karlsen ◽  
Henning Dypvik ◽  
Lars Jonas Jørgensen Narvhus ◽  
...  

The shallow-marine Upper Jurassic–Lower Cretaceous sedimentary successions of the Mandawa Basin, coastal Tanzania, are located about 80 km away from the offshore gas discoveries of Block 2, Tanzania. In this paper we present petroleum geochemical data, including bitumen extracted from outcrop samples which are relevant to the understanding of the onshore ‘Petroleum System’ and possibly also to the offshore basin. Despite some biodegradation and weathering, common to all outcrop samples, most bitumen samples analysed contain mature migrated oil. The maturity span of geomarkers (C13–C15 range) covers the entire oil and condensate/wet gas window (Rc = 0.7–2% Rc, where Rc is the calculated vitrinite reflectance), with the biomarkers generally indicating the oil window (Rc = 0.7–1.3% Rc). This suggests that the bitumen extracts represent several phases of migrated oil and condensate, which shows that the samples are part of an active or recently active migration regime or ‘Petroleum System’. The source-rock facies inferred for the bitumen is Type II/III kerogen of siliciclastic to carbonate facies. This is oil-prone kerogen, typical for a marine depositional system with an influx of proximal-derived terrigenous material blended in with in situ marine algal organic matter (OM). Application of age-specific biomarkers such as the C28/C29-steranes, extended tricyclic terpane ratio (ETR), nordiacholestanes and the aromatic steroids suggest that more than one source rock have contributed to the bitumen. Possible ages are limited to the Mesozoic (i.e. excluding the Late Paleozoic), with the most likely source rock belonging to the Early Jurassic. More geochemical and geological studies should be undertaken to further develop the general understanding of the petroleum system of the Mandawa Basin and its implications to the ‘Petroleum Systems’ both offshore and onshore. This paper also presents a reinterpretation of published gas composition and isotope data on the Pande, Temane and Inhassoro gas fields (Mozambique) with implications for possible oil discoveries in the gas-dominated region.


GeoArabia ◽  
2005 ◽  
Vol 10 (3) ◽  
pp. 131-168 ◽  
Author(s):  
Mahdi Abu-Ali ◽  
Ralf Littke

ABSTRACT The major Paleozoic petroleum system of Saudi Arabia is qualitatively characterized by a proven Silurian (Qusaiba Member, Qalibah Formation) source rock, Devonian (Jauf Formation), Permian and Carboniferous (Khuff and Unayzah formations) reservoirs, a laterally extensive, regional Permian seal (basal Khuff clastics and Khuff evaporites), and four-way closed Hercynian structures. Hydrocarbons found in these systems include non-associated gas in Eastern Arabia and extra light oil in Central Arabia. A basin modeling approach was used to quantify important aspects of the petroleum system. Firstly, seventeen regional wells were selected to establish a reference tool for the three-dimensional (3-D) basin model using multiple one-dimensional (1-D) models. This was accomplished by studying core material from source rocks and other lithologies for thermal maturity and kerogen quality. The major emphasis was on the Silurian section, other Paleozoic intervals and to a lesser extent on the Mesozoic cover from which only few samples were studied. Although vitrinite macerals, solid bitumen, and other vitrinite-like particles were not abundant in most of the investigated samples, enough measured data established valid maturity-depth trends allowing for calibrated models of temperature history. Sensitivity analyses for maturity support the view that thermal boundary conditions and Hercynian uplift and erosion did not greatly influence the Paleozoic petroleum systems. Secondly, a 3-D basin model was constructed using major geologic horizon maps spanning the whole stratigraphic column. This model was used to gain insight into the general maturity distribution, acquire a better control of the model boundary conditions and investigate charge, drainage, migration and filling history of the main Paleozoic reservoirs. The 3-D hydrocarbon migration simulation results qualitatively account for the present gas accumulations in the Permian-Early Triassic Khuff and Carboniferous-Permian Unayzah reservoirs in the Ghawar area. This kind of study illustrates the importance of basin modeling when used with other geologic data to describe petroleum systems. It provides a predictive exploratory tool for efficiently modeling hydrocarbon distribution from known fields. Real earth models can only be described in 3-D as pressure variations and fluid movements in the subsurface are impossible to address in 1-D and 2-D domains.


2018 ◽  
Vol 6 (1) ◽  
pp. SB11-SB21 ◽  
Author(s):  
Marko Cvetković ◽  
Ivona Emanović ◽  
Andrej Stopar ◽  
Petra Slavinić

The eastern part of the Drava Depression presents a relatively small part within the Croatian part of the Pannonian Basin. A confined part within the eastern part of the Drava Depression with a working petroleum system but few hydrocarbon accumulations was selected for the evaluation of the remaining hydrocarbon potential. Four subsurface models were built with different levels of detail on which determination of source rock maturity, assessment of potential, and finally, volumes of the potentially accumulated hydrocarbons were estimated. In addition, several case scenarios, regarding source rock properties and boundary conditions were addressed to present the risk points in the model. Results proved that the amounts of hydrocarbons generated ([Formula: see text] of oil and [Formula: see text] of gas) and accumulated ([Formula: see text] of oil and [Formula: see text] of gas) in the subsurface strongly support further exploration efforts even for the conservative modeling parameters (low heat flow [HF] and moderate total organic carbon values). A set of scenarios was also modeled including different HF, total organic content, and kinetic values each with significant impact for the final model result.


2021 ◽  
Author(s):  
A. R. Livsey

The South Sumatra Basin has been a focus for hydrocarbon exploration since the earliest oil discoveries in the late 1890s. Despite production of over 2500MMbbls of oil and 9.5TCF of gas our regional understanding of the basin’s petroleum systems is still evolving. Most discoveries occur along a series of Late Neogene NNW-SSE elongated anticlines. The most prolific reservoirs are fluvial – shallow marine sandstones of the Upper Oligocene – Lower Miocene Talang Akar Formation but hydrocarbons have also been discovered in numerous sandstone and carbonate reservoirs ranging in age from Middle – Late Miocene to Eocene. Pre-Tertiary fractured Basement reservoirs are also important gas producers. A geochemical database for produced, tested and seep oils and gases has been compiled from the analytical reports, produced by different service companies over a 40-year period, to understand the spatial distribution of hydrocarbon types and relate this to source type, source maturity and migration patterns. Integration with published palaeoenvironmental reconstructions for the time intervals associated with source rock deposition has enabled a better understanding of migration directions and migration limits. The database of over 100 oils and 40 gases has revealed a wider variation in geochemical character than previously thought, indicating the presence of numerous fluvio-deltaic and lacustrine types suggesting subtle variations in the character of the effective source rocks within the basin, related to both organic matter type and depositional environment. Seven major oil families, often with several sub-groups, have been identified, while the presence of both biogenic and thermogenic gases of varying maturities are also noted. Spatial analysis of these hydrocarbons, integrated with source rock indications, palaeoenvironmental reconstructions and structural maps have allowed definition of kitchen areas and drainage areas for these hydrocarbon accumulations and a better understanding of the charge risk and likely hydrocarbon type in undrilled areas.


The stratigraphy of the Sokoto Basin has the Illo/Gundumi Formation at the bottom, followed successively upward by the Taloka, Dukamaje, Wurno, Dange, Kalambaina, Gamba and Gwandu Formations. Re-mapping of the basin carried out in this study shows that the geological framework remains largely as previously outlined except that some hitherto unreported tectonically controlled structures have been documented. The basin is generally shallower at the margin and deepens towards the centre such that the areas around the border with Niger Republic are deepest and hence most prospective on the Nigerian side. Geophysical aeromagnetic interpretation has assisted to analyze the depth to basement configurations. Organic geochemical studies show that the dark shales and limestones of the Dukamaje Formation constitute the source rocks in the potential petroleum system. With averages for source rock thickness of 50m, area of basin of 60,000km2, TOC of 7.5wt%, and HI of 212mgHC/gTOC, charge modeling indicates 808.10 million barrels of oil equivalent extractable hydrocarbons in the Sokoto Basin, at current knowledge of the geology and if the appropriate maturity has been attained at deeper sections. The sandstones of the Illo/Gundumi Formation as well as in the Taloka and Wurno Formations and carbonates of the Kalambaina Formation provide potential reservoir packages. The paper shale of the Gamba Formation and the clays of the Gwandu Formation provide regional seals. If the presently mapped tectonic structures are ubiquitous in the whole basin, structural and stratigraphic traps may upgrade the petroleum system. Other petroleum systems may exist in the basin with either or both the Illo/Gundumi and Taloka Formation(s) providing the source and reservoir rocks. Keywords: Sokoto Basin, Dukamaje Formation, Hydrocarbons, Petroleum System, Reservoirs


2016 ◽  
Vol 8 (1) ◽  
pp. 187-197 ◽  
Author(s):  
Iain C. Scotchman ◽  
Anthony G. Doré ◽  
Anthony M. Spencer

AbstractThe exploratory drilling of 200 wildcat wells along the NE Atlantic margin has yielded 30 finds with total discovered resources of c. 4.1×109 barrels of oil equivalent (BOE). Exploration has been highly concentrated in specific regions. Only 32 of 144 quadrants have been drilled, with only one prolific province discovered – the Faroe–Shetland Basin, where 23 finds have resources totalling c. 3.7×109 BOE. Along the margin, the pattern of discoveries can best be assessed in terms of petroleum systems. The Faroe–Shetland finds belong to an Upper Jurassic petroleum system. On the east flank of the Rockall Basin, the Benbecula gas and the Dooish condensate/gas discoveries have proven the existence of a petroleum system of unknown source – probably Upper Jurassic. The Corrib gas field in the Slyne Basin is evidence of a Carboniferous petroleum system. The three finds in the northern Porcupine Basin are from Upper Jurassic source rocks; in the south, the Dunquin well (44/23-1) suggests the presence of a petroleum system there, but of unknown source. This pattern of petroleum systems can be explained by considering the distribution of Jurassic source rocks related to the break-up of Pangaea and marine inundations of the resulting basins. The prolific synrift marine Upper Jurassic source rock (of the Northern North Sea) was not developed throughout the pre-Atlantic Ocean break-up basin system west of Britain and Ireland. Instead, lacustrine–fluvio-deltaic–marginal marine shales of predominantly Late Jurassic age are the main source rocks and have generated oils throughout the region. The structural position, in particular relating to the subsequent Early Cretaceous hyperextension adjacent to the continental margin, is critical in determining where this Upper Jurassic petroleum system will be most effective.


2015 ◽  
Vol 55 (1) ◽  
pp. 297
Author(s):  
Malcolm Bendall ◽  
Clive Burrett ◽  
Paul Heath ◽  
Andrew Stacey ◽  
Enzo Zappaterra

Prior to the onshore work of Empire Energy Corporation International (Empire) it was widely believed that the widespread sheets (>650 m thick) of Jurassic dolerite (diabase) would not only have destroyed the many potential petroleum source and reservoir rocks in the basin but would also absorb seismic energy and would be impossible to drill. By using innovative acquisition parameters, however, major and minor structures and formations can be identified on the 1,149 km of 2D Vibroseis. Four Vibroseis trucks were used with a frequency range of 6–140 Hz with full frequency sweeps close together, thereby achieving maximum input and return signal. Potential reservoir and source rocks may be seismically mapped within the Gondwanan Petroleum System (GPS) of the Carboniferous to Triassic Parmeener Supergroup in the Tasmania Basin. Evidence for a working GPS is from a seep of migrated, Tasmanite-sourced, heavy crude oil in fractured dolerite and an oil-bearing breached reservoir in Permian siliciclastics. Empire’s wells show that each dolerite sheet consists of several intrusive units and that contact metamorphism is usually restricted to within 70 m of the sheets’ lower margins. In places, there are two thick sheets, as on Bruny Island. One near-continuous 6,500 km2 sheet is mapped seismically across central Tasmania and is expected, along with widespread Permian mudstones, to have acted as an excellent regional seal. The highly irregular pre-Parmeener unconformity can be mapped across Tasmania and large anticlines (Bellevue and Thunderbolt prospects and Derwent Bridge Anticline) and probable reefs can be seismically mapped beneath this unconformity within the Ordovician Larapintine Petroleum System. Two independent calculations of mean undiscovered potential (or prospective) resources in structures defined so far by Empire’s seismic surveys are 596.9 MMBOE (millions of barrels of oil equivalent) and 668.8 MMBOE.


2017 ◽  
Vol 188 (5) ◽  
pp. 33 ◽  
Author(s):  
Marc Blaizot

Global inventory of shale-oil resources and reserves are far from being complete even in mature basins which have been intensively drilled and produced and in which the main parameters of the regional or local oil-prone source rocks are known. But even in these cases, difficulties still occur for deriving reserves from resources: reaching a plausible recovery factor is actually a complex task because of the lack of production history in many shale-oil ventures. This exercise is in progress in several institutions (EIA, USGS, AAPG) or private oil and gas companies on a basin-by-basin basis in order to estimate the global potential. This analytical method is very useful and accurate but also very time consuming. In the last EIA report in 2013 “only” 95 basins had been surveyed whereas for example, no Middle-East or Caspian basins have been taken into account. In order to accelerate the process and to reach an order of magnitude of worldwide shale-oil reserves, we propose hereafter a method based on the Petroleum System principle as defined by Demaison and Huizinga (Demaison G and Huizinga B. 1991. Genetic classification of Petroleum Systems. AAPG Bulletin 75 (10): 1626–1643) and more precisely on the Petroleum System Yield (PSY) defined as the ratio (at a source-rock drainage area scale) between the accumulated hydrocarbons in conventional traps (HCA) and hydrocarbons generated by the mature parts of the source-rock (HCG). By knowing the initial oil reserves worldwide we can first derive the global HCA and then the HCG. Using a proxy for amount of the migrated oil from the source-rocks to the trap, one can obtain the retained accumulations within the shales and then their reserves by using assumptions about a possible average recovery factor for shale-oil. As a definition of shale-oil or more precisely LTO (light tight oil), we will follow Jarvie (Jarvie D. 2012. Shale resource systems for oil & gas: part 2 – Shale Oil Resources Systems. In: Breyer J, ed. Shale Reservoirs. AAPG, Memoir 97, pp. 89–119) stating that “shale-oil is oil stored in organic rich intervals (the source rock itself) or migrated into juxtaposed organic lean intervals”. According to several institutes or companies, the worldwide initial recoverable oil reserves should reach around 3000 Gbo, taking into account the already produced oil (1000 Gbo) and the “Yet to Find” oil (500 Gbo). Following a review of more than 50 basins within different geodynamical contexts, the world average PSY value is around 5% except for very special Extra Heavy Oils (EHO) belts like the Orinoco or Alberta foreland basins where PSY can reach 50% (!) because large part of the migrated oils have been trapped and preserved and not destroyed by oxidation as it is so often the case. This 50% PSY figure is here considered as a good proxy for the global amount of expelled and migrated oil as compared to the HCG. Confirmation of such figures can also be achieved when studying the ratio of S1 (in-place hydrocarbon) versus S2 (potential hydrocarbons to be produced) of some source rocks in Rock-Eval laboratory measurements. Using 3000 Gbo as worldwide oil reserves and assuming a quite optimistic average recovery factor of 40%, the corresponding HCA is close to 7500 Gbo and HCG (= HCA/PSY) close to 150 000 Gbo. Assuming a 50% expulsion (migration) factor, we obtain that 75 000 Gbo is trapped in source-rocks worldwide which corresponds to the shale-oil resources. To derive the (recoverable) reserves from these resources, one needs to estimate an average recovery factor (RF). Main parameters for determining recovery factors are reasonable values of porosity and saturation which is difficult to obtain in these extremely fine-grained, tight unconventional reservoirs associated with sampling and laboratories technical workflows which vary significantly. However, new logging technologies (NMR) as well as SEM images reveal that the main effective porosity in oil-shales is created, thanks to maturity increase, within the organic matter itself. Accordingly, porosity is increasing with Total Organic Carbon (TOC) and paradoxically with… burial! Moreover, porosity has never been water bearing, is mainly oil-wet and therefore oil saturation is very high, measured and calculated between 75 and 90%. Indirect validation of such high figures can be obtained when looking at the first vertical producing wells in the Bakken LTO before hydraulic fracturing started which show a very low water-cut (between 1 and 4%) up to a cumulative oil production of 300 Kbo. One can therefore assume that the highest RF values of around 10% should be used, as proposed by several researchers. Accordingly, the worldwide un-risked shale-oil reserves should be around 7500 Gbo. However, a high risk factor should be applied to some subsurface pitfalls (basins with mainly dispersed type III kerogen source-rocks or source rocks located in the gas window) and to many surface hurdles caused by human activities (farming, housing, transportation lines, etc…) which can hamper developments of shale-oil production. Assuming that only shale-oil basins in (semi) desert conditions (i.e., mainly parts of Middle East, Kazakstan, West Siberia, North Africa, West China, West Argentina, West USA and Canada, Mexico and Australia) will be developed, a probability factor of 20% can be used. Accordingly, the global shale-oil reserves could reach 1500 Gbo which is half the initial conventional reserves and could therefore double the present conventional oil remaining reserves.


Sign in / Sign up

Export Citation Format

Share Document