Petroleum systems and results of exploration on the Atlantic margins of the UK, Faroes & Ireland: what have we learnt?

2016 ◽  
Vol 8 (1) ◽  
pp. 187-197 ◽  
Author(s):  
Iain C. Scotchman ◽  
Anthony G. Doré ◽  
Anthony M. Spencer

AbstractThe exploratory drilling of 200 wildcat wells along the NE Atlantic margin has yielded 30 finds with total discovered resources of c. 4.1×109 barrels of oil equivalent (BOE). Exploration has been highly concentrated in specific regions. Only 32 of 144 quadrants have been drilled, with only one prolific province discovered – the Faroe–Shetland Basin, where 23 finds have resources totalling c. 3.7×109 BOE. Along the margin, the pattern of discoveries can best be assessed in terms of petroleum systems. The Faroe–Shetland finds belong to an Upper Jurassic petroleum system. On the east flank of the Rockall Basin, the Benbecula gas and the Dooish condensate/gas discoveries have proven the existence of a petroleum system of unknown source – probably Upper Jurassic. The Corrib gas field in the Slyne Basin is evidence of a Carboniferous petroleum system. The three finds in the northern Porcupine Basin are from Upper Jurassic source rocks; in the south, the Dunquin well (44/23-1) suggests the presence of a petroleum system there, but of unknown source. This pattern of petroleum systems can be explained by considering the distribution of Jurassic source rocks related to the break-up of Pangaea and marine inundations of the resulting basins. The prolific synrift marine Upper Jurassic source rock (of the Northern North Sea) was not developed throughout the pre-Atlantic Ocean break-up basin system west of Britain and Ireland. Instead, lacustrine–fluvio-deltaic–marginal marine shales of predominantly Late Jurassic age are the main source rocks and have generated oils throughout the region. The structural position, in particular relating to the subsequent Early Cretaceous hyperextension adjacent to the continental margin, is critical in determining where this Upper Jurassic petroleum system will be most effective.

2017 ◽  
Vol 8 (1) ◽  
pp. 67-86 ◽  
Author(s):  
Jashar Arfai ◽  
Rüdiger Lutz

Abstract3D basin and petroleum system modelling covering the NW German North Sea (Entenschnabel) was performed to reconstruct the thermal history, maturity and petroleum generation of three potential source rocks, namely the Namurian–Visean coals, the Lower Jurassic Posidonia Shale and the Upper Jurassic Hot Shale.Modelling results indicate that the NW study area did not experience the Late Jurassic heat flow peak of rifting as in the Central Graben. Therefore, two distinct heat flow histories are needed since the Late Jurassic to achieve a match between measured and calculated vitrinite reflection data. The Namurian–Visean source rocks entered the early oil window during the Late Carboniferous, and reached an overmature state in the Central Graben during the Late Jurassic. The oil-prone Posidonia Shale entered the main oil window in the Central Graben during the Late Jurassic. The deepest part of the Posidonia Shale reached the gas window in the Early Cretaceous, showing maximum transformation ratios of 97% at the present day. The Hot Shale source rock exhibits transformation ratios of up to 78% within the NW Entenschnabel and up to 20% within the Central Graben area. The existing gas field (A6-A) and oil shows in Chalk sediments of the Central Graben can be explained by our model.


1991 ◽  
Vol 14 (1) ◽  
pp. 117-126
Author(s):  
J. BREWSTER

AbstractThe Frigg Field was the first giant gas field to be discovered in the northern North Sea. Its position on the boundary line between the UK and Norway called for international cooperation at an early stage in development. The Lower Eocene reservoir sands have extremely good poroperm characteristics but the heterogeneities within the sands control the water influx from the immense Eocene and Palaeocene aquifers below.


2015 ◽  
Vol 55 (1) ◽  
pp. 297
Author(s):  
Malcolm Bendall ◽  
Clive Burrett ◽  
Paul Heath ◽  
Andrew Stacey ◽  
Enzo Zappaterra

Prior to the onshore work of Empire Energy Corporation International (Empire) it was widely believed that the widespread sheets (>650 m thick) of Jurassic dolerite (diabase) would not only have destroyed the many potential petroleum source and reservoir rocks in the basin but would also absorb seismic energy and would be impossible to drill. By using innovative acquisition parameters, however, major and minor structures and formations can be identified on the 1,149 km of 2D Vibroseis. Four Vibroseis trucks were used with a frequency range of 6–140 Hz with full frequency sweeps close together, thereby achieving maximum input and return signal. Potential reservoir and source rocks may be seismically mapped within the Gondwanan Petroleum System (GPS) of the Carboniferous to Triassic Parmeener Supergroup in the Tasmania Basin. Evidence for a working GPS is from a seep of migrated, Tasmanite-sourced, heavy crude oil in fractured dolerite and an oil-bearing breached reservoir in Permian siliciclastics. Empire’s wells show that each dolerite sheet consists of several intrusive units and that contact metamorphism is usually restricted to within 70 m of the sheets’ lower margins. In places, there are two thick sheets, as on Bruny Island. One near-continuous 6,500 km2 sheet is mapped seismically across central Tasmania and is expected, along with widespread Permian mudstones, to have acted as an excellent regional seal. The highly irregular pre-Parmeener unconformity can be mapped across Tasmania and large anticlines (Bellevue and Thunderbolt prospects and Derwent Bridge Anticline) and probable reefs can be seismically mapped beneath this unconformity within the Ordovician Larapintine Petroleum System. Two independent calculations of mean undiscovered potential (or prospective) resources in structures defined so far by Empire’s seismic surveys are 596.9 MMBOE (millions of barrels of oil equivalent) and 668.8 MMBOE.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Said Keshta ◽  
Farouk J. Metwalli ◽  
H. S. Al Arabi

Abu Madi/El Qar'a is a giant field located in the north eastern part of Nile Delta and is an important hydrocarbon province in Egypt, but the origin of hydrocarbons and their migration are not fully understood. In this paper, organic matter content, type, and maturity of source rocks have been evaluated and integrated with the results of basin modeling to improve our understanding of burial history and timing of hydrocarbon generation. Modeling of the empirical data of source rock suggests that the Abu Madi formation entered the oil in the middle to upper Miocene, while the Sidi Salem formation entered the oil window in the lower Miocene. Charge risks increase in the deeper basin megasequences in which migration hydrocarbons must traverse the basin updip. The migration pathways were principally lateral ramps and faults which enabled migration into the shallower middle to upper Miocene reservoirs. Basin modeling that incorporated an analysis of the petroleum system in the Abu Madi/El Qar'a field can help guide the next exploration phase, while oil exploration is now focused along post-late Miocene migration paths. These results suggest that deeper sections may have reservoirs charged with significant unrealized gas potential.


2019 ◽  
Vol 27 (1) ◽  
pp. petgeo2019-050
Author(s):  
Tesfamariam Berhane Abay ◽  
Katrine Fossum ◽  
Dag Arild Karlsen ◽  
Henning Dypvik ◽  
Lars Jonas Jørgensen Narvhus ◽  
...  

The shallow-marine Upper Jurassic–Lower Cretaceous sedimentary successions of the Mandawa Basin, coastal Tanzania, are located about 80 km away from the offshore gas discoveries of Block 2, Tanzania. In this paper we present petroleum geochemical data, including bitumen extracted from outcrop samples which are relevant to the understanding of the onshore ‘Petroleum System’ and possibly also to the offshore basin. Despite some biodegradation and weathering, common to all outcrop samples, most bitumen samples analysed contain mature migrated oil. The maturity span of geomarkers (C13–C15 range) covers the entire oil and condensate/wet gas window (Rc = 0.7–2% Rc, where Rc is the calculated vitrinite reflectance), with the biomarkers generally indicating the oil window (Rc = 0.7–1.3% Rc). This suggests that the bitumen extracts represent several phases of migrated oil and condensate, which shows that the samples are part of an active or recently active migration regime or ‘Petroleum System’. The source-rock facies inferred for the bitumen is Type II/III kerogen of siliciclastic to carbonate facies. This is oil-prone kerogen, typical for a marine depositional system with an influx of proximal-derived terrigenous material blended in with in situ marine algal organic matter (OM). Application of age-specific biomarkers such as the C28/C29-steranes, extended tricyclic terpane ratio (ETR), nordiacholestanes and the aromatic steroids suggest that more than one source rock have contributed to the bitumen. Possible ages are limited to the Mesozoic (i.e. excluding the Late Paleozoic), with the most likely source rock belonging to the Early Jurassic. More geochemical and geological studies should be undertaken to further develop the general understanding of the petroleum system of the Mandawa Basin and its implications to the ‘Petroleum Systems’ both offshore and onshore. This paper also presents a reinterpretation of published gas composition and isotope data on the Pande, Temane and Inhassoro gas fields (Mozambique) with implications for possible oil discoveries in the gas-dominated region.


2013 ◽  
Vol 53 (2) ◽  
pp. 427
Author(s):  
Emmanuelle Grosjean ◽  
Chris Boreham ◽  
Andrew Jones ◽  
Diane Jorgensen ◽  
John Kennard

The discovery of commercial oil in the Cliff Head-1 well in 2001 set an important milestone in the exploration history of the offshore northern Perth Basin. The region had been less explored before then, partly due to the perception that the main source of onshore petroleum accumulations, the Late Permian-Early Triassic Hovea Member, had only marginal potential offshore. The typing of the Cliff Head oil to the Hovea Member provided evidence that the key onshore petroleum system extends offshore and has revitalised exploration with 13 new field wildcat wells drilled since 2002. A reassessment of the hydrocarbon generative potential in the offshore northern Perth Basin confirms the widespread occurrence of good to excellent oil-prone Hovea Member source rocks in the Beagle Ridge and Abrolhos Sub-basin. The Early Permian Irwin River Sequence and several Jurassic Sequences are also recognised as prime potential source rocks offshore, mostly for their gas-generative potential. The unique hydrocarbon assemblages exhibited by the Hovea Member extracts are shared by the oils recovered from Permian reservoirs in the offshore Cliff Head-3 and Dunsborough-1 wells, indicating the Hovea Member as the primary source charging these accumulations. Geochemical correlation of oil stains from Hadda-1 and as far north as Livet-1 provides evidence for a working Early Triassic petroleum system across much of the Abrolhos Sub-basin. In this area, the Hovea Member was shown to be both of limited quality and only marginally mature for oil generation, which suggests the occurrence of effective source kitchens in the adjacent Houtman Sub-basin.


1999 ◽  
Vol 39 (1) ◽  
pp. 297 ◽  
Author(s):  
D.S. Edwards ◽  
H.I.M. Struckmeyer ◽  
M.T. Bradshaw ◽  
J.E. Skinner

The hydrocarbons discovered to date on the southern margin of Australia have been assigned to the Austral Petroleum Supersystem based on the age of their source rocks and common tectonic history. Modelling of the source facies distribution within this supersystem using tectonic, climatic and geographic history of the southern margin basins, suggests the presence of a variety of source rocks deposited in saline playa lakes, fluvial, lacustrine, deltaic and anoxic marine environments.Testing of the palaeogeographic model using geochemical characteristics of liquid hydrocarbons confirms the three-fold subdivision (Al, A2 and A3) of the Austral Petroleum Supersystem.Bass Basin oils are assigned to the Austral 3, Eastern View Petroleum System. The presence of oleanane in the biomarker assemblages of these oils, together with their negatively sloping, heavy, isotopic profiles, indicate derivation from Upper Cretaceous-Tertiary fluvio–deltaic source facies.In the eastern Otway Basin, oils of the Austral 2, Eumeralla Petroleum System are sourced by Lower Cretaceous (Aptian–Albian) coaly facies. Oil shows reservoired in the Wigunda Formation at Greenly-1 in the Duntroon Basin are possibly sourced from the Borda Formation and are assigned to the Austral 2, Borda Petroleum System.In the western Otway, Duntroon and Bight basins, a lack of definitive oil-source rock correlations precludes the identification of individual Austral 1 petroleum systems.


2015 ◽  
Vol 3 (3) ◽  
pp. SV1-SV7
Author(s):  
Gary H. Isaksen

Oils and condensates with high concentrations of gasoline-range hydrocarbons typically lack adequate quantities of [Formula: see text] biomarkers used for thermal maturity and organic facies evaluations. I attempted a calibration of rock-based thermal maturity parameters between gasoline-range molecular parameters and nonmolecular maturity parameters such as Rock-Eval Tmax, vitrinite reflectance, and downhole temperatures. This enables maturity evaluation of volatile oils and condensates whose biomarker concentrations are at low or trace levels. The rock-based calibration data were used to assess thermal maturity of nonvolatile oils, volatile oils, and condensates from the Central Graben area of the UK North Sea and includes samples from high-pressure (gradients [Formula: see text]) and high-temperature ([Formula: see text]) hydrocarbon systems. Source rocks for theses North Sea oils and condensates are the Upper Jurassic Kimmeridge Clay and Heather shales, with a predominance of marine, algal type II organic matter.


1997 ◽  
Vol 37 (1) ◽  
pp. 351 ◽  
Author(s):  
D.S. Edwards ◽  
R.E. Summons ◽  
J.M. Kennard ◽  
R.S. Nicoll ◽  
J. Bradshaw ◽  
...  

Isotopic and biomarker analyses carried out on Cambrian to Permian oils and source rocks in the Arafura, Bonaparte (Petrel Sub-basin) and Canning Basins have been used to geochemically characterise five distinct petroleum systems within the Larapintine and Gondwanan Petroleum Supersystems. The Larapintine 1 Petroleum System is characterised by isotopically light, free hydrocarbons in the Arafura Basin (613Csat = −32 %o Arafura-1) which have been correlated to kerogens of similar isotopic signature within the Middle Cambrian Jigaimara Formation. The richness and maturity of these source rocks indicate that an effective Larapintine 1 Petroleum System may exist in the northern parts of the Arafura Basin. Larapintine 2 oils, with Gloeocapsomorpha prisca-type signatures, are found on the Barbwire- Dampier Terraces and Admiral Bay Fault Zone in the Canning Basin. These oils can be correlated to source rocks in the Lower Ordovician Goldwyer Formation on the Barbwire Terrace and the Bongabinni Formation in the Admiral Bay Fault Zone by their diagnostic odd- carbon-number preference in the C15—CJ9 n-alkanes. Larapintine 3 oils are derived from Upper Devonian marine carbonates in the Canning Basin and Petrel Sub- basin and have a diagnostic biomarker signature which includes a predominance of steranes relative to diasteranes and abundant gammacerane and 30- norhopanes, similar to those observed in the Upper Devonian Gogo and Pillara Formations. Larapintine 4 oils are derived from Lower Carboniferous marine, clay- rich mudstones in both the Petrel Sub-basin and Canning Basin. They are isotopically light (mean δ13C sat = −28 %o) and have a unique terpane signature which has been identified within the Milligans Formation. Gondwanan 1 Petroleum System hydrocarbons, represented here by the Petrel-4 condensate, have a heavy isotopic signature (δ13C sat = −24 %o) which, coupled with an abundance of the diasterane and diahopane biomarkers, indicates derivation from Permian deltaic source facies. Recognition of the diagnostic geochemical components of each Palaeozoic petroleum system has led to the identification of Permian-like isotopic signatres in some hydrocabon accumulations in the Timor Sea that were previously attributed to Mesozoic sources.


Sign in / Sign up

Export Citation Format

Share Document