Integrated reservoir characterization of a Utica Shale with focus on sweet spot discrimination

2020 ◽  
Vol 8 (3) ◽  
pp. SM1-SM14
Author(s):  
Jinming Zhu

Multiclient 3D seismic data were acquired in 2015 in eastern Ohio for reservoir characterization of the Utica Shale consisting of the Utica and Point Pleasant Formations. I attained accurate, high-fidelity acoustic impedance, shear impedance, density, and [Formula: see text], from elastic inversion. These accurate inversion results allow consistent calculation of reservoir and geomechanical properties of the Utica Shale. I found density critically important affecting the accuracy of other reservoir and geomechanical properties. More than a dozen properties in geologic, geomechanical, and reservoir categories were acquired from logs, cores, and seismic inversion, for this integrated reservoir characterization study. These properties include buried depth, formation thickness, mineralogy, density, Young’s modulus, Poisson’s ratio (PR), brittleness, total organic carbon (TOC), porosity, water saturation, permeability, clay content, and natural fractures. A ternary diagram of core samples from 18 wells demonstrates that the Point Pleasant is dominant with calcite, whereas the Utica mainly contains clay. Inverted density clearly divides Point Pleasant as low density from the overlying Utica. Calculated reservoir properties undoubtedly delineate the traditional Utica Shale as two distinctive formations. I calculated that the Utica Formation contains 1%–2% TOC, 3.5%–4.8% porosity, 10%–24% water saturation, and 40%–58% clay content, whereas Point Pleasant contains 3%–4.5% TOC, 5%–9% porosity, 2%–10% water saturation, and 15%–35% clay content. The PR and brittleness clearly separate Point Pleasant from the overlying Utica, with a lower PR and a higher brittleness index in Point Pleasant than in Utica. The higher brittleness in Point Pleasant makes it easier to frac, leading to enhanced permeability. Both formations exhibit spatial variations of reservoir and geomechanical properties. Nevertheless, the underlying Point Pleasant is obviously better than the Utica Shale with favorable reservoir and geomechanical properties for optimal development and production, although Utica is thicker and shallower. The central and southeastern portions of Point Pleasant have the sweetest reservoirs.

2018 ◽  
Vol 37 (9) ◽  
pp. 656-661
Author(s):  
Jinming Zhu

We performed an integrated multidisciplinary study for reservoir characterization of a Utica Shale field in eastern Ohio covered by a multiclient 3D seismic data set acquired in 2015. Elastic seismic inversion was performed in-house for effective reservoir characterization of the Utica Shale, which covers the interval from the top of Upper Utica (UUTIC) to the top of Trenton Limestone. Accurate, high-fidelity inversion results were obtained, including acoustic impedance, shear impedance, density, and VP/VS. These consistent inversion results allow for the reliable calculation of geomechanical and petrophysical properties of the reservoir. The inverted density clearly divides the Point Pleasant (PPLS) interval as low density from the overlying UUTIC Shale interval. Both Poisson's ratio (PR) and brittleness unmistakably separate the underlying PPLS from the overlying Utica interval. The PPLS Formation is easier to hydraulically fracture due to its much lower PR. Sequence S4 is the best due to its higher Young's modulus to sustain the open fractures. The calculated petrophysical volumes indisputably delineate the traditional Utica Shale into two distinctive sections. The upper section, the UUTIC, can be described as having 1%–2% total organic carbon (TOC), 3.5%–4.8% porosity, 10%–24% water saturation, and 40%–58% clay content. The lower section, PPLS, can be described as having 3%–4.5% TOC, 5%–9% porosity, 2%–10% water saturation, and about 15%–35% clay content. Both sections exhibit spatial variation of the properties. Nevertheless, the underlying PPLS is obviously a significantly better reservoir and operationally easier to produce.


2019 ◽  
Vol 10 (3) ◽  
pp. 118-124
Author(s):  
Mustafa Yar ◽  
Syed Waqas Haider ◽  
Ghulam Nabi ◽  
Muhammad Tufail ◽  
Sajid Rahman

Present study deals with petrophysical interpretation of Zaur-03 well for reservoir characterization of sandintervals of Lower Goru Formation in Badin Block, Southern Indus Basin, Pakistan. Early Cretaceous Lower GoruFormation is the distinct reservoir that is producing hydrocarbons for two decades. Complete suite of wireline logsincluding GR log, Caliper log, SP log, Resistivity logs (MSFL, LLS, LLD), Neutron log and Density log along withwell tops and complete drilling parameters were analyzed in this study. The prime objective of this study was to markzones of interest that could act as reservoir and to evaluate reservoir properties including shale volume (Vsh), porosity(ϕ), water saturation (Sw), hydrocarbon saturation (Sh) and net pay thickness. Based on Petrophysical evaluation threezones have been marked in Lower Goru Formation, A Sand (1890m to 1930m), B-sand (1935m to 2010) and C-sand(2015m to 2100m). The average calculated parameters for evaluation of reservoir properties of Zaur-03 well depicts anaverage porosity of 8.92% and effective porosity of 4.81%. Water Saturation is calculated as 28.54% and HydrocarbonsSaturation is 71.46%. Analysis shows that Sh in Zaur-03 well is high so the production of hydrocarbons iseconomically feasible.


Author(s):  
Mustafa Yar ◽  
Syed Waqas Haider ◽  
Ghulam Nabi ◽  
Muhammad Tufail ◽  
Sajid Rahman

Present study deals with petrophysical interpretation of Zaur-03 well for reservoir characterization of sandintervals of Lower Goru Formation in Badin Block, Southern Indus Basin, Pakistan. Early Cretaceous Lower GoruFormation is the distinct reservoir that is producing hydrocarbons for two decades. Complete suite of wireline logsincluding GR log, Caliper log, SP log, Resistivity logs (MSFL, LLS, LLD), Neutron log and Density log along withwell tops and complete drilling parameters were analyzed in this study. The prime objective of this study was to markzones of interest that could act as reservoir and to evaluate reservoir properties including shale volume (Vsh), porosity(ϕ), water saturation (Sw), hydrocarbon saturation (Sh) and net pay thickness. Based on Petrophysical evaluation threezones have been marked in Lower Goru Formation, A Sand (1890m to 1930m), B-sand (1935m to 2010) and C-sand(2015m to 2100m). The average calculated parameters for evaluation of reservoir properties of Zaur-03 well depicts anaverage porosity of 8.92% and effective porosity of 4.81%. Water Saturation is calculated as 28.54% and HydrocarbonsSaturation is 71.46%. Analysis shows that Sh in Zaur-03 well is high so the production of hydrocarbons iseconomically feasible.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6154
Author(s):  
Daniela Becerra ◽  
Christopher R. Clarkson ◽  
Amin Ghanizadeh ◽  
Rafael Pires de Lima ◽  
Farshad Tabasinejad ◽  
...  

Completion design for horizontal wells is typically performed using a geometric approach where the fracturing stages are evenly distributed along the lateral length of the well. However, this approach ignores the intrinsic vertical and horizontal heterogeneity of unconventional reservoirs, resulting in uneven production from hydraulic fracturing stages. An alternative approach is to selectively complete intervals with similar and superior reservoir quality (RQ) and completion quality (CQ), potentially leading to improved development efficiency. In the current study, along-well reservoir characterization is performed using data from a horizontal well completed in the Montney Formation in western Canada. Log-derived petrophysical and geomechanical properties, and laboratory analyses performed on drill cuttings, are integrated for the purpose of evaluating RQ and CQ variability along the well. For RQ, cutoffs were applied to the porosity (>4%), permeability (>0.0018 mD), and water saturation (<20%), whereas, for CQ, cutoffs were applied to rock strength (<160 Mpa), Young’s Modulus (60–65 GPa), and Poisson’s ratio (<0.26). Based on the observed heterogeneity in reservoir properties, the lateral length of the well can be subdivided into nine segments. Superior RQ and CQ intervals were found to be associated with predominantly (massive) porous siltstone facies; these intervals are regarded as the primary targets for stimulation. In contrast, relatively inferior RQ and CQ intervals were found to be associated with either dolomite-cemented facies or laminated siltstones. The methods developed and used in this study could be beneficial to Montney operators who aim to better predict and target sweet spots along horizontal wells; the approach could also be used in other unconventional plays.


2021 ◽  
pp. 3570-3586
Author(s):  
Mohanad M. Al-Ghuribawi ◽  
Rasha F. Faisal

     The Yamama Formation includes important carbonates reservoir that belongs to the Lower Cretaceous sequence in Southern Iraq. This study covers two oil fields (Sindbad and Siba) that are distributed Southeastern Basrah Governorate, South of Iraq. Yamama reservoir units were determined based on the study of cores, well logs, and petrographic examination of thin sections that required a detailed integration of geological data and petrophysical properties. These parameters were integrated in order to divide the Yamama Formation into six reservoir units (YA0, YA1, YA2, YB1, YB2 and YC), located between five cap rock units. The best facies association and petrophysical properties were found in the shoal environment, where the most common porosity types were the primary (interparticle) and secondary (moldic and vugs) . The main diagenetic process that occurred in YA0, YA2, and YB1 is cementation, which led to the filling of pore spaces by cement and subsequently decreased the reservoir quality (porosity and permeability). Based on the results of the final digital  computer interpretation and processing (CPI) performed by using the Techlog software, the units YA1 and YB2 have the best reservoir properties. The unit YB2 is characterized by a good effective porosity average, low water saturation, good permeability, and large thickness that distinguish it from other reservoir units.


2019 ◽  
Vol 38 (2) ◽  
pp. 106-115 ◽  
Author(s):  
Phuong Hoang ◽  
Arcangelo Sena ◽  
Benjamin Lascaud

The characterization of shale plays involves an understanding of tectonic history, geologic settings, reservoir properties, and the in-situ stresses of the potential producing zones in the subsurface. The associated hydrocarbons are generally recovered by horizontal drilling and hydraulic fracturing. Historically, seismic data have been used mainly for structural interpretation of the shale reservoirs. A primary benefit of surface seismic has been the ability to locate and avoid drilling into shallow carbonate karsting zones, salt structures, and basement-related major faults which adversely affect the ability to drill and complete the well effectively. More recent advances in prestack seismic data analysis yield attributes that appear to be correlated to formation lithology, rock strength, and stress fields. From these, we may infer preferential drilling locations or sweet spots. Knowledge and proper utilization of these attributes may prove valuable in the optimization of drilling and completion activities. In recent years, geophysical data have played an increasing role in supporting well planning, hydraulic fracturing, well stacking, and spacing. We have implemented an integrated workflow combining prestack seismic inversion and multiattribute analysis, microseismic data, well-log data, and geologic modeling to demonstrate key applications of quantitative seismic analysis utilized in developing ConocoPhillips' acreage in the Delaware Basin located in Texas. These applications range from reservoir characterization to well planning/execution, stacking/spacing optimization, and saltwater disposal. We show that multidisciplinary technology integration is the key for success in unconventional play exploration and development.


2019 ◽  
Vol 38 (5) ◽  
pp. 332-332
Author(s):  
Yongyi Li ◽  
Lev Vernik ◽  
Mark Chapman ◽  
Joel Sarout

Rock physics links the physical properties of rocks to geophysical and petrophysical observations and, in the process, serves as a focal point in many exploration and reservoir characterization studies. Today, the field of rock physics and seismic petrophysics embraces new directions with diverse applications in estimating static and dynamic reservoir properties through time-variant mechanical, thermal, chemical, and geologic processes. Integration with new digital and computing technologies is gradually gaining traction. The use of rock physics in seismic imaging, prestack seismic analysis, seismic inversion, and geomechanical model building also contributes to the increase in rock-physics influence. This special section highlights current rock-physics research and practices in several key areas, namely experimental rock physics, rock-physics theory and model studies, and the use of rock physics in reservoir characterizations.


Author(s):  
Amir Abbas Babasafari ◽  
Shiba Rezaei ◽  
Ahmed Mohamed Ahmed Salim ◽  
Sayed Hesammoddin Kazemeini ◽  
Deva Prasad Ghosh

Abstract For estimation of petrophysical properties in industry, we are looking for a methodology which results in more accurate outcome and also can be validated by means of some quality control steps. To achieve that, an application of petrophysical seismic inversion for reservoir properties estimation is proposed. The main objective of this approach is to reduce uncertainty in reservoir characterization by incorporating well log and seismic data in an optimal manner. We use nonlinear optimization algorithms in the inversion workflow to estimate reservoir properties away from the wells. The method is applied at well location by fitting nonlinear experimental relations on the petroelastic cross-plot, e.g., porosity versus acoustic impedance for each lithofacies class separately. Once a significant match between the measured and the predicted reservoir property is attained in the inversion workflow, the petrophysical seismic inversion based on lithofacies classification is applied to the inverted elastic property, i.e., acoustic impedance or Vp/Vs ratio derived from seismic elastic inversion to predict the reservoir properties between the wells. Comparison with the neural network method demonstrated this application of petrophysical seismic inversion to be competitive and reliable.


Sign in / Sign up

Export Citation Format

Share Document