Study on the pore structure and fractal characteristics on shale rock and isolated organic matter in lacustrine shales from the Changling fault depression in the Songliao Basin, China

2021 ◽  
pp. 1-67
Author(s):  
Zhikai Liang ◽  
Zhenxue Jiang ◽  
Zhuo Li ◽  
Fenglin Gao ◽  
Chengxi Wang ◽  
...  

The stock of shale gas in the Shahezi shale reservoir in Changling fault depression, Songliao basin is believed to be worth exploring. To conduct an in-depth study on the pore structure and fractal characterization of organic matter (OM) can help better understand the pore system of shale reservoir, which has implications for the exploration of lacustrine shale. In order to demonstrate the nanoscale pore structure and irregularity of the isolated OM, we collected a large number of samples and then conducted a series of laboratory experiments, such as the XRD, SEM, CO2, and N2 adsorption experiments conducted to determine the pore structure parameters and reveal their heterogeneity according to FHH theory. As suggested by the experimental results, the pore volume of the isolated OM ranges between 0.034 and 0.056 cm3/g, which is approximately 0.90-3.06 times that of bulk shale samples. As for the fractal dimensions D1 (2.594 on average) and D2 (2.657 on average) of bulk shale, they are larger as compared to isolated OM, indicating that inorganic minerals can make a significant difference to the heterogeneity of shale pores. The fractal dimensions (D1 and D2) of bulk shales show a close correlation with the parameters of pore structure, while there is no significant correlation observed between the dimensions of isolated OM and its parameters. In addition, thermal maturity and solid bitumen have only limited impact on the OM pore structure of isolated OM samples. Then, we conducted a further research to reveal that the insoluble OM macerals derived from terrestrial higher plants can be used to explain the difference in pore structure and heterogeneity between isolated OM samples. Therefore, we arrived at the conclusion that the composition of macerals depends on the exact pore structure and fractal characteristics of isolated OM samples with similarity in thermal maturity

Minerals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 127 ◽  
Author(s):  
Zhuo Li ◽  
Zhikai Liang ◽  
Zhenxue Jiang ◽  
Fenglin Gao ◽  
Yinghan Zhang ◽  
...  

The Lower Cretaceous Shahezi shales are the targets for lacustrine shale gas exploration in Changling Fault Depression (CFD), Southern Songliao Basin. In this study, the Shahezi shales were investigated to further understand the impacts of rock compositions, including organic matters and minerals on pore structure and fractal characteristics. An integrated experiment procedure, including total organic carbon (TOC) content, X-ray diffraction (XRD), field emission-scanning electron microscope (FE-SEM), low pressure nitrogen physisorption (LPNP), and mercury intrusion capillary pressure (MICP), was conducted. Seven lithofacies can be identified according to on a mineralogy-based classification scheme for shales. Inorganic mineral hosted pores are the most abundant pore type, while relatively few organic matter (OM) pores are observed in FE-SEM images of the Shahezi shales. Multimodal pore size distribution characteristics were shown in pore width ranges of 0.5–0.9 nm, 3–6 nm, and 10–40 nm. The primary controlling factors for pore structure in Shahezi shales are clay minerals rather than OM. Organic-medium mixed shale (OMMS) has the highest total pore volumes (0.0353 mL/g), followed by organic-rich mixed shale (ORMS) (0.02369 mL/g), while the organic-poor shale (OPS) has the lowest pore volumes of 0.0122 mL/g. Fractal dimensions D1 and D2 (at relative pressures of 0–0.5 and 0.5–1 of LPNP isotherms) were obtained using the Frenkel–Halsey–Hill (FHH) method, with D1 ranging from 2.0336 to 2.5957, and D2 between 2.5779 and 2.8821. Fractal dimensions are associated with specific lithofacies, because each lithofacies has a distinctive composition. Organic-medium argillaceous shale (OMAS), rich in clay, have comparatively high fractal dimension D1. In addition, organic-medium argillaceous shale (ORAS), rich in TOC, have comparatively high fractal dimension D2. OPS shale contains more siliceous and less TOC, with the lowest D1 and D2. Factor analysis indicates that clay contents is the most significant factor controlling the fractal dimensions of the lacustrine Shahezi shale.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shouxu Pan ◽  
Ming Zha ◽  
Changhai Gao ◽  
Jiangxiu Qu ◽  
Xiujian Ding

In order to examine the pore structure and reveal the fractal geometric nature of shales, a series of laboratory experiments were conducted on lacustrine shale samples cored from the Kongdian Formation. Based on the low temperature nitrogen adsorption, fluorescent thin section and field emission scanning electronic microscope, a comprehensive pore structure classification and evaluation were conducted on shale samples. Fractal dimensions D1 and D2 (with relative pressure of 0–0.45 and 0.45–1.00, respectively) were obtained from the nitrogen adsorption data using the fractal Frenkel-Halsey-Hill (FHH) method. With additional means of X-ray diffraction analysis, total organic carbon content analysis and thermal maturity analysis, the relationships between pore structure parameters, fractal dimensions, TOC content and mineral composition are presented and discussed in this paper. The results show that interparticle pores and microfractures are predominant, whereas organic matter pores are rarely found. The pore morphology is primarily featured with wide-open ends and slit-shaped structures. In terms of pore scale, mesopores and macropores are predominant. The value of fractal dimension D1 representing small pores ranges from 2.0173 to 2.4642 with an average of 2.1735. The value of D2 which represents large pores ranges from 2.3616 to 2.5981 with an average of 2.4960. These low numbers are an indication of few pore types and relatively low heterogeneity. In addition, smaller D1 values reveal that large pores have more complicated spatial structures than smaller ones. The results of correlation analysis show that: 1) D2 is correlated positively with specific surface area but negatively with average pore diameter; 2) D1 and D2 literally show no obvious relationship with mineral composition, TOC content or vitrinite reflectance (Ro); 3) both total Barrett-Joyner-Halenda (BJH) volume and specific surface area show a positive relationship with dolomite content and a negative relationship with felsic minerals content. These results demonstrate that the pore types are relatively few and dominated by mesopores, and the content of brittle minerals such as dolomite and felsic minerals control the pore structure development whilst organic matter and clay minerals have less influence due to low thermal maturity and abundance of clay minerals.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Yuqi Huang ◽  
Peng Zhang ◽  
Jinchuan Zhang ◽  
Xuan Tang ◽  
Chengwei Liu ◽  
...  

The pore structure of marine-continental transitional shales from the Longtan Formation in Guizhou, China, was investigated using fractal dimensions calculated by the FHH (Frenkel-Halsey-Hill) model based on low-temperature N2 adsorption data. Results show that the overall D 1 (fractal dimension under low relative pressure, P / P 0 ≤ 0.5 ) and D 2 (fractal dimension under high relative pressure, P / P 0 > 0.5 ) values of Longtan shales were relatively large, with average values of 2.7426 and 2.7838, respectively, indicating a strong adsorption and storage capacity and complex pore structure. The correlation analysis of fractal dimensions with specific surface area, average pore size, and maximum gas absorption volume indicates that D 1 can comprehensively characterize the adsorption and storage capacity of shales, while D 2 can effectively characterize the pore structure complexity. Further correlation among pore fractal dimension, shale organic geochemical parameters, and mineral composition parameters shows that there is a significant positive correlation between fractal dimensions and organic matter abundance as well as a complex correlation between fractal dimension and organic matter maturity. Fractal dimensions increase with an increase in clay mineral content and pyrite content but decrease with an increase in quartz content. Considering the actual geological evaluation and shale gas exploitation characteristics, a lower limit for D 1 and upper limit for D 2 should be set as evaluation criteria for favorable reservoirs. Combined with the shale gas-bearing property test results of Longtan shales in Guizhou, the favorable reservoir evaluation criteria are set as D 1 ≥ 2.60 and D 2 ≤ 2.85 . When D 1 is less than 2.60, the storage capacity of the shales is insufficient. When D 2 is greater than 2.85, the shale pore structure is too complicated, resulting in poor permeability and difficult exploitation.


2000 ◽  
Vol 88 (5) ◽  
pp. 1551-1557 ◽  
Author(s):  
William A. Altemeier ◽  
Steve McKinney ◽  
Robb W. Glenny

High-resolution measurements of pulmonary perfusion reveal substantial spatial heterogeneity that is fractally distributed. This observation led to the hypothesis that the vascular tree is the principal determinant of regional blood flow. Recent studies using aerosol deposition show similar ventilation heterogeneity that is closely correlated with perfusion. We hypothesize that ventilation has fractal characteristics similar to blood flow. We measured regional ventilation and perfusion with aerosolized and injected fluorescent microspheres in six anesthetized, mechanically ventilated pigs in both prone and supine postures. Adjacent regions were clustered into progressively larger groups. Coefficients of variation were calculated for each cluster size to determine fractal dimensions. At the smallest size lung piece, local ventilation and perfusion are highly correlated, with no significant difference between ventilation and perfusion heterogeneity. On average, the fractal dimension of ventilation is 1.16 in the prone posture and 1.09 in the supine posture. Ventilation has fractal properties similar to perfusion. Efficient gas exchange is preserved, despite ventilation and perfusion heterogeneity, through close correlation. One potential explanation is the similar geometry of bronchial and vascular structures.


2021 ◽  
Vol 21 (1) ◽  
pp. 343-353
Author(s):  
Wei-Dong Xie ◽  
Meng Wang ◽  
Xiao-Qi Wang ◽  
Yan-Di Wang ◽  
Chang-Qing Hu

Pore structure and fractal dimensions can characterize the adsorption, desorption and seepage characteristics of shale gas reservoirs. In this study, pore structure, fractal characteristics and influencing factors were studied of the Longmaxi formation shale gas reservoir in southeastern Chongqing, China. Scanning electron microscopy was used to describe the characteristics of various reservoirs. High pressure mercury intrusion and low temperature liquid N2 and CO2 adsorption experiments were used to obtain pore structure parameters. V–S model, FHH model and Menger sponge model were selected to calculate the micropore, mesopore and macropore fractal dimensions, respectively. The results show that organic matter pores, inter-granular pores, intra-granular pores and micro-fractures are developed within the shale, and the pore morphology is mostly ink pores and parallel plate pores with aperture essentially in the 1–2 nm and 2–50 nm ranges. Moreover, macropores are the most complex in these samples, with mesopores being less complex than macropores, and the micropores being the simplest. D1 (micropore fractal dimension) ranges from 2.31 to 2.50, D2 (mesopore fractal dimension) ranges from 2.74 to 2.83, D3 (macropore fractal dimension) ranges from 2.87 to 2.95, and Dt (comprehensive fractal dimension) ranges from 2.69 to 2.83 of fractal characteristics. D1 and D2 are mainly controlled by TOC content, while D3 and Dt are mainly controlled by brittle and clay mineral content. These results may be helpful for exploration and the development of shale gas in southeastern Chongqing, China.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Jian Xiong ◽  
Xiangjun Liu ◽  
Lixi Liang

We mainly focus on the Permian, Lower Cambrian, Lower Silurian, and Upper Ordovician Formation; the fractal dimensions of marine shales in southern China were calculated using the FHH fractal model based on the low-pressure nitrogen adsorption analysis. The results show that the marine shales in southern China have the dual fractal characteristics. The fractal dimensionD1at low relative pressure represents the pore surface fractal characteristics, whereas the fractal dimensionD2at higher relative pressure describes the pore structure fractal characteristics. The fractal dimensionsD1range from 2.0918 to 2.718 with a mean value of 2.4762, and the fractal dimensionsD2range from 2.5842 to 2.9399 with a mean value of 2.8015. There are positive relationships between fractal dimensionD1and specific surface area and total pore volume, whereas the fractal dimensionsD2have negative correlation with average pore size. The larger the value of the fractal dimensionD1is, the rougher the pore surface is, which could provide more adsorption sites, leading to higher adsorption capacity for gas. The larger the value of the fractal dimensionD2is, the more complicated the pore structure is, resulting in the lower flow capacity for gas.


Minerals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 72 ◽  
Author(s):  
Longfei Xu ◽  
Jinchuan Zhang ◽  
Jianghui Ding ◽  
Tong Liu ◽  
Gang Shi ◽  
...  

The purpose of this article was to quantitatively investigate the pore structure and fractal characteristics of different lithofacies in the upper Permian Dalong Formation marine shale. Shale samples in this study were collected from well GD1 in the Lower Yangtze region for mineral composition, X-ray diffraction (XRD), and nitrogen adsorption–desorption analysis, as well as broad-ion beam scanning electron microscopy (BIB-SEM) observation. Experimental results showed that the TOC (total organic carbon) content and vitrinite reflectance (Ro) of the investigated shale samples were in the ranges 1.18–6.45% and 1.15–1.29%, respectively, showing that the Dalong Formation shale was in the mature stage. XRD results showed that the Dalong Formation shale was dominated by quartz ranging from 38.4% to 54.3%, followed by clay minerals in the range 31.7–37.5%, along with carbonate minerals (calcite and dolomite), with an average value of 9.6%. Based on the mineral compositions of the studied samples, the Dalong Formation shale can be divided into two types of lithofacies, namely siliceous shale facies and clay–siliceous mixed shale facies. In siliceous shale facies, which were mainly composed of organic pores, the surface area (SA) and pore volume (PV) were in the range of 5.20–10.91 m2/g and 0.035–0.046 cm3/g, respectively. Meanwhile, the pore size distribution (PSD) and fractal dimensions were in the range 14.2–26.1 nm and 2.511–2.609, respectively. I/S (illite-smectite mixed clay) was positively correlated with SA, PV, and fractal dimensions, while illite had a negative relationship with SA, PV, and fractal dimensions. I/S had a strong catalytic effect on organic matter for hydrocarbon generation, which was beneficial to the development of organic micropores, so I/S was conducive to pore structure complexity and the increase in SA and PV, while illite easily filled organic pores, which was not beneficial to the improvement of pore space. In clay–siliceous mixed shale facies, which mainly develop inorganic pores such as intergranular pores, SA and PV were in the range of 6.71–11.38 m2/g and 0.030–0.041 cm3/g, respectively. Meanwhile, PSD and fractal dimensions were in the range of 14.3–18.9 nm and 2.563–2.619, respectively. Quartz and I/S showed weak positive correlations with SA, PV, and fractal dimensions. The various compact modes between quartz particles and the disorder of I/S were conducive to the complexity of pore structure and the improvement of SA and PV. The research findings can provide a reference for the optimization and evaluation of shale gas favorable area of the Lower Yangtze Platform.


Sign in / Sign up

Export Citation Format

Share Document