scholarly journals The Impacts of Matrix Compositions on Nanopore Structure and Fractal Characteristics of Lacustrine Shales from the Changling Fault Depression, Songliao Basin, China

Minerals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 127 ◽  
Author(s):  
Zhuo Li ◽  
Zhikai Liang ◽  
Zhenxue Jiang ◽  
Fenglin Gao ◽  
Yinghan Zhang ◽  
...  

The Lower Cretaceous Shahezi shales are the targets for lacustrine shale gas exploration in Changling Fault Depression (CFD), Southern Songliao Basin. In this study, the Shahezi shales were investigated to further understand the impacts of rock compositions, including organic matters and minerals on pore structure and fractal characteristics. An integrated experiment procedure, including total organic carbon (TOC) content, X-ray diffraction (XRD), field emission-scanning electron microscope (FE-SEM), low pressure nitrogen physisorption (LPNP), and mercury intrusion capillary pressure (MICP), was conducted. Seven lithofacies can be identified according to on a mineralogy-based classification scheme for shales. Inorganic mineral hosted pores are the most abundant pore type, while relatively few organic matter (OM) pores are observed in FE-SEM images of the Shahezi shales. Multimodal pore size distribution characteristics were shown in pore width ranges of 0.5–0.9 nm, 3–6 nm, and 10–40 nm. The primary controlling factors for pore structure in Shahezi shales are clay minerals rather than OM. Organic-medium mixed shale (OMMS) has the highest total pore volumes (0.0353 mL/g), followed by organic-rich mixed shale (ORMS) (0.02369 mL/g), while the organic-poor shale (OPS) has the lowest pore volumes of 0.0122 mL/g. Fractal dimensions D1 and D2 (at relative pressures of 0–0.5 and 0.5–1 of LPNP isotherms) were obtained using the Frenkel–Halsey–Hill (FHH) method, with D1 ranging from 2.0336 to 2.5957, and D2 between 2.5779 and 2.8821. Fractal dimensions are associated with specific lithofacies, because each lithofacies has a distinctive composition. Organic-medium argillaceous shale (OMAS), rich in clay, have comparatively high fractal dimension D1. In addition, organic-medium argillaceous shale (ORAS), rich in TOC, have comparatively high fractal dimension D2. OPS shale contains more siliceous and less TOC, with the lowest D1 and D2. Factor analysis indicates that clay contents is the most significant factor controlling the fractal dimensions of the lacustrine Shahezi shale.

2021 ◽  
Vol 21 (1) ◽  
pp. 234-245
Author(s):  
Peng Qiao ◽  
Yiwen Ju ◽  
Jianchao Cai ◽  
Jun Zhao ◽  
Hongjian Zhu ◽  
...  

The complex pore system in tight sandstone reservoirs controls the storage and transport of natural gas. Thus, quantitatively characterizing the micro-nanopore structure of tight sandstone reservoirs is of great significance to determining the accumulation and distribution of tight gas. The pore structure of reservoirs was determined through polarizing microscopy, scanning electron microscopy (SEM), and the combination of mercury injection capillary pressure (MICP) and nuclear magnetic resonance (NMR) experiments on Late Paleozoic conventional and tight sandstone samples from the Linxing Block, Ordos Basin. The results show that in contrast to conventional sandstone, dissolution pores, with diameters less than 8 μm, are the main contributors to the gas storage space of tight sandstone reservoirs. The pore size distribution derived from the MICP experiment demonstrates that the main peak of tight sandstones corresponds to a pore radius in the range of 247 nm to 371 nm, while the secondary peak usually corresponds to 18 nm. The results of the NMR test illustrate that the T2 spectra of tight sandstones are unimodal, bimodal and multimodal, and the main NMR peak is highly related to the MICP peak. Fractal theory was proposed to quantitatively characterize the complex pore structure and rough porous surface. The sandstones show fractal characteristics including nanopore fractal dimension DN obtained from the MICP and large pore fractal dimension DL obtained from the NMR experiment. Both DN and DL are positively correlated with porosity and negatively correlated with permeability, demonstrating that complex and heterogeneous pore structure could increase the gas storage space and reduce the connectivity.


2021 ◽  
Vol 21 (1) ◽  
pp. 343-353
Author(s):  
Wei-Dong Xie ◽  
Meng Wang ◽  
Xiao-Qi Wang ◽  
Yan-Di Wang ◽  
Chang-Qing Hu

Pore structure and fractal dimensions can characterize the adsorption, desorption and seepage characteristics of shale gas reservoirs. In this study, pore structure, fractal characteristics and influencing factors were studied of the Longmaxi formation shale gas reservoir in southeastern Chongqing, China. Scanning electron microscopy was used to describe the characteristics of various reservoirs. High pressure mercury intrusion and low temperature liquid N2 and CO2 adsorption experiments were used to obtain pore structure parameters. V–S model, FHH model and Menger sponge model were selected to calculate the micropore, mesopore and macropore fractal dimensions, respectively. The results show that organic matter pores, inter-granular pores, intra-granular pores and micro-fractures are developed within the shale, and the pore morphology is mostly ink pores and parallel plate pores with aperture essentially in the 1–2 nm and 2–50 nm ranges. Moreover, macropores are the most complex in these samples, with mesopores being less complex than macropores, and the micropores being the simplest. D1 (micropore fractal dimension) ranges from 2.31 to 2.50, D2 (mesopore fractal dimension) ranges from 2.74 to 2.83, D3 (macropore fractal dimension) ranges from 2.87 to 2.95, and Dt (comprehensive fractal dimension) ranges from 2.69 to 2.83 of fractal characteristics. D1 and D2 are mainly controlled by TOC content, while D3 and Dt are mainly controlled by brittle and clay mineral content. These results may be helpful for exploration and the development of shale gas in southeastern Chongqing, China.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Jian Xiong ◽  
Xiangjun Liu ◽  
Lixi Liang

We mainly focus on the Permian, Lower Cambrian, Lower Silurian, and Upper Ordovician Formation; the fractal dimensions of marine shales in southern China were calculated using the FHH fractal model based on the low-pressure nitrogen adsorption analysis. The results show that the marine shales in southern China have the dual fractal characteristics. The fractal dimensionD1at low relative pressure represents the pore surface fractal characteristics, whereas the fractal dimensionD2at higher relative pressure describes the pore structure fractal characteristics. The fractal dimensionsD1range from 2.0918 to 2.718 with a mean value of 2.4762, and the fractal dimensionsD2range from 2.5842 to 2.9399 with a mean value of 2.8015. There are positive relationships between fractal dimensionD1and specific surface area and total pore volume, whereas the fractal dimensionsD2have negative correlation with average pore size. The larger the value of the fractal dimensionD1is, the rougher the pore surface is, which could provide more adsorption sites, leading to higher adsorption capacity for gas. The larger the value of the fractal dimensionD2is, the more complicated the pore structure is, resulting in the lower flow capacity for gas.


2021 ◽  
pp. 1-67
Author(s):  
Zhikai Liang ◽  
Zhenxue Jiang ◽  
Zhuo Li ◽  
Fenglin Gao ◽  
Chengxi Wang ◽  
...  

The stock of shale gas in the Shahezi shale reservoir in Changling fault depression, Songliao basin is believed to be worth exploring. To conduct an in-depth study on the pore structure and fractal characterization of organic matter (OM) can help better understand the pore system of shale reservoir, which has implications for the exploration of lacustrine shale. In order to demonstrate the nanoscale pore structure and irregularity of the isolated OM, we collected a large number of samples and then conducted a series of laboratory experiments, such as the XRD, SEM, CO2, and N2 adsorption experiments conducted to determine the pore structure parameters and reveal their heterogeneity according to FHH theory. As suggested by the experimental results, the pore volume of the isolated OM ranges between 0.034 and 0.056 cm3/g, which is approximately 0.90-3.06 times that of bulk shale samples. As for the fractal dimensions D1 (2.594 on average) and D2 (2.657 on average) of bulk shale, they are larger as compared to isolated OM, indicating that inorganic minerals can make a significant difference to the heterogeneity of shale pores. The fractal dimensions (D1 and D2) of bulk shales show a close correlation with the parameters of pore structure, while there is no significant correlation observed between the dimensions of isolated OM and its parameters. In addition, thermal maturity and solid bitumen have only limited impact on the OM pore structure of isolated OM samples. Then, we conducted a further research to reveal that the insoluble OM macerals derived from terrestrial higher plants can be used to explain the difference in pore structure and heterogeneity between isolated OM samples. Therefore, we arrived at the conclusion that the composition of macerals depends on the exact pore structure and fractal characteristics of isolated OM samples with similarity in thermal maturity


2021 ◽  
Vol 21 (1) ◽  
pp. 274-283
Author(s):  
Liang Liu ◽  
Wuling Mo ◽  
Min Wang ◽  
Nengwu Zhou ◽  
Yu Yan ◽  
...  

The fractal characteristics of marine shale from the Middle-Upper Ordovician Wulalike Formation (O2w) in the southwest margin of the Ordos Basin are studied. Based on low-temperature nitrogen adsorption experiments, the FHH (Frenkel-Halsey-Hill) model was employed to investigate the relationship between the marine shale composition, such as TOC, mineral content and shale gas content, and pore structure parameters, such as BET specific surface area, average pore diameter, porosity and fractal dimension. The results show that the pore size distribution curve of shale slowly decreased after the pore size was greater than 50 nm, the pore size distribution showed multiple peaks, and the peak value was mainly in the range of 2–10 nm. Most pores are nanopores, although the pore type and shape are different. Two different fractal dimensions D1 and D2 are obtained from the two segments with relative pressures of 0–0.5 and 0.5–1.0, respectively: the D1 range is 2.77–2.82, and the D2 range is 2.63–2.66. As D1 is larger than D2, the pore structure of small pores is more uniform than that of large pores in the shale samples. The relationship between the fractal dimensions D1 and D2 and the total organic carbon (TOC) content is a convex curve. Fractal dimension D reaches its maximum when TOC is 0.53 wt.%. Fractal dimension D decreases with increasing specific surface area, porosity and average pore size. The fractal dimension has a different influence on the gas storage and migration in shale; the larger the fractal dimension is, the stronger the heterogeneity and the more complex the pore structure, and this outcome is conducive to the storage of gas in shale but not beneficial to the permeability and production of gas.


2018 ◽  
Vol 159 ◽  
pp. 01006
Author(s):  
Bagus Hario Setiadji ◽  
Supriyono ◽  
Djoko Purwanto

Several studies have shown that fractal theory can be used to analyze the morphology of aggregate materials in designing the gradation. However, the question arises whether a fractal dimension can actually represent a single aggregate gradation. This study, which is a part of a grand research to determine aggregate gradation based on known asphalt mixture specifications, is performed to clarify the aforementioned question. To do so, two steps of methodology were proposed in this study, that is, step 1 is to determine the fractal characteristics using 3 aggregate gradations (i.e. gradations near upper and lower bounds, and middle gradation); and step 2 is to back-calculate aggregate gradation based on fractal characteristics obtained using 2 scenarios, one-and multi-fractal dimension scenarios. The results of this study indicate that the multi-fractal dimension scenario provides a better prediction of aggregate gradation due to the ability of this scenario to better represent the shape of the original aggregate gradation. However, careful consideration must be observed when using more than two fractal dimensions in predicting aggregate gradation as it will increase the difficulty in developing the fractal characteristic equations.


2021 ◽  
Vol 5 (4) ◽  
pp. 152
Author(s):  
Shao-Heng He ◽  
Zhi Ding ◽  
Hai-Bo Hu ◽  
Min Gao

In this study, a series of nuclear magnetic resonance (NMR) tests was conducted on calcareous sand, quartz sand, and glass bead with a wide range of grain sizes, to understand the effect of grain size on the micro-pore structure and fractal characteristics of the carbonate-based sand and silicate-based sand. The pore size distribution (PSD) of the tested materials were obtained from the NMR T2 spectra, and fractal theory was introduced to describe the fractal properties of PSD. Results demonstrate that grain size has a significant effect on the PSD of carbonate-based sand and silicate-based sand. As grain size increases, the PSD of sands evolves from a binary structure with two peaks to a ternary structure with three peaks. The increase in the grain size can cause a remarkable increase in the maximum pore size. It is also found that the more irregular the particle shape, the better the continuity between the large and medium pores. In addition, grain size has a considerable effect on the fractal dimension of the micro-pore structure. The increase of grain size can lead to a significant increase in the heterogeneity and fractal dimension in PSD for calcareous sand, quartz sand and glass bead.


2012 ◽  
Vol 204-208 ◽  
pp. 1923-1928
Author(s):  
Bo Tan ◽  
Rui Hua Yang ◽  
Yan Ting Lai

The paper presents the fractal dimension formula of distribution of asphalt mixture aggregate diameter by the deducing mass fractal characteristics function. Taking AC-20 and SMA-20 as examples, selected 6 groups of representative grading curves within the grading envelope proposed by the present specification, and calculated their fractal dimensions. The asphalt mixture gradation has fractal dimension D (D∈(1,3)), and the fractal of continuous gradation is single while the fractal of gap-gradation shows multi-fractal with 4.75 as the dividing point. Fractal dimension of aggregate gradation of asphalt mixture reflect the structure characteristics of aggregate distribution, that is, finer is aggregate, bigger is the fractal dimension.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 583 ◽  
Author(s):  
Xiaohong Li ◽  
Zhiyong Gao ◽  
Siyi Fang ◽  
Chao Ren ◽  
Kun Yang ◽  
...  

The characteristics of the nanopore structure in shale, tight sandstone and mudstone from the Ordos Basin of China were investigated by X-ray diffraction (XRD) analysis, porosity and permeability tests and low-pressure nitrogen adsorption experiments. Fractal dimensions D1 and D2 were determined from the low relative pressure range (0 < P/P0 < 0.4) and the high relative pressure range (0.4 < P/P0 < 1) of nitrogen adsorption data, respectively, using the Frenkel–Halsey–Hill (FHH) model. Relationships between pore structure parameters, mineral compositions and fractal dimensions were investigated. According to the International Union of Pure and Applied Chemistry (IUPAC) isotherm classification standard, the morphologies of the nitrogen adsorption curves of these 14 samples belong to the H2 and H3 types. Relationships among average pore diameter, Brunner-Emmet-Teller (BET) specific surface area, pore volume, porosity and permeability have been discussed. The heterogeneities of shale nanopore structures were verified, and nanopore size mainly concentrates under 30 nm. The average fractal dimension D1 of all the samples is 2.1187, varying from 1.1755 to 2.6122, and the average fractal dimension D2 is 2.4645, with the range from 2.2144 to 2.7362. Compared with D1, D2 has stronger relationships with pore structure parameters, and can be used for analyzing pore structure characteristics.


2011 ◽  
Vol 250-253 ◽  
pp. 1846-1851
Author(s):  
Xiao Xuan Liu ◽  
Ji Ru Zhang

The micro pore structure of isotropic consolidated clay was studied by using a scanning electron microscope (SEM). A digital imaging technique was applied to analyze the evolution of size, number of pores and their distributions in the process of isotropic consolidation according to the SEM images. Based on the fractal concepts of Koch curve and Sierpinski carpet, the Koch fractal dimension Dk and the Sierpinski fractal dimensionDsof soil pores are obtained from the measured data. The variations of bothDkandDsfollowing the change of micro pore parameters and mechanical properties of clay are investigated. The results show that the porosity and pore size decreases as the consolidation pressure increases, and the range of pore size becomes narrower.Dkreflects the degree of irregularity of the pore-solid interface in soil, and the larger theDkthe more irregular the soil pore profile. The distribution of Dkwas found in agreement with a total normal distribution in soil pore. The magnitude ofDsreflects the variation of porosity of clay under isotropic consolidation. Large fractal corresponds to large consolidation pressure and small porosity.Dsdisplays a significant linear regression relationship with porosity, consolidation pressure, consolidation deformation of clay and an exponential growth relationship with permeability coefficient of clay. Both Dk andDsis sensitive to isotropic consolidation of soil and they may be cited as useful indicators for soil consolidation.


Sign in / Sign up

Export Citation Format

Share Document