scholarly journals An Investigation of Fractal Characteristics of Marine Shales in the Southern China from Nitrogen Adsorption Data

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Jian Xiong ◽  
Xiangjun Liu ◽  
Lixi Liang

We mainly focus on the Permian, Lower Cambrian, Lower Silurian, and Upper Ordovician Formation; the fractal dimensions of marine shales in southern China were calculated using the FHH fractal model based on the low-pressure nitrogen adsorption analysis. The results show that the marine shales in southern China have the dual fractal characteristics. The fractal dimensionD1at low relative pressure represents the pore surface fractal characteristics, whereas the fractal dimensionD2at higher relative pressure describes the pore structure fractal characteristics. The fractal dimensionsD1range from 2.0918 to 2.718 with a mean value of 2.4762, and the fractal dimensionsD2range from 2.5842 to 2.9399 with a mean value of 2.8015. There are positive relationships between fractal dimensionD1and specific surface area and total pore volume, whereas the fractal dimensionsD2have negative correlation with average pore size. The larger the value of the fractal dimensionD1is, the rougher the pore surface is, which could provide more adsorption sites, leading to higher adsorption capacity for gas. The larger the value of the fractal dimensionD2is, the more complicated the pore structure is, resulting in the lower flow capacity for gas.

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yao Cheng ◽  
Yifeng Xie ◽  
Yulin Ma ◽  
Yanlin Zhao

In this study, the pore structure and fractal characteristics of shale samples with different bedding directions and sizes from the Longmaxi Formation of the Changning block in the Sichuan Basin were investigated by using CT imaging and low-temperature nitrogen adsorption experiments. The pore morphology, pore structure characteristics, relationships between the fractal dimensions and pore parameters, and effect of the size and bedding direction on pore morphology and various pore parameters were explored. In terms of pore structure characteristics, we found that the pores of shale samples were well developed and connected, forming a large number of pore clusters. The pores were mainly open pores and mesopores, which contributed the most to the specific surface area of the pores. Two fractal dimensions D1 and D2 were calculated from nitrogen adsorption data at relative pressures of 0–0.45 and 0.45–1, using the FHH method. These fractal dimensions characterized the pore surface and pore structure complexity, respectively. D1 ranged from 2.773 to 2.923, with a mean value of 2.821, and D2 varied from 2.853 to 2.899, with a mean value of 2.874. These variations indicated that there were irregular pore surfaces and sophisticated pore structures in the shale. The sample size and bedding direction had a significant impact on pore morphology and various pore parameters. Several pore characteristics of the vertical samples were superior to those of the horizontal samples. With an increase in size, the pore distribution became more uniform, the number of pore clusters increased, and the connectivity between pore clusters was enhanced. There was a good positive correlation between the fractal dimension D2 and specific surface area and moderate positive correlation between D2 and porosity and between D2 and pore volume. However, the fractal dimension D1 had a weak negative correlation with porosity and specific surface area and moderate negative correlation with pore volume. Moreover, both D1 and D2 tended to decrease with increasing average pore diameter.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 583 ◽  
Author(s):  
Xiaohong Li ◽  
Zhiyong Gao ◽  
Siyi Fang ◽  
Chao Ren ◽  
Kun Yang ◽  
...  

The characteristics of the nanopore structure in shale, tight sandstone and mudstone from the Ordos Basin of China were investigated by X-ray diffraction (XRD) analysis, porosity and permeability tests and low-pressure nitrogen adsorption experiments. Fractal dimensions D1 and D2 were determined from the low relative pressure range (0 < P/P0 < 0.4) and the high relative pressure range (0.4 < P/P0 < 1) of nitrogen adsorption data, respectively, using the Frenkel–Halsey–Hill (FHH) model. Relationships between pore structure parameters, mineral compositions and fractal dimensions were investigated. According to the International Union of Pure and Applied Chemistry (IUPAC) isotherm classification standard, the morphologies of the nitrogen adsorption curves of these 14 samples belong to the H2 and H3 types. Relationships among average pore diameter, Brunner-Emmet-Teller (BET) specific surface area, pore volume, porosity and permeability have been discussed. The heterogeneities of shale nanopore structures were verified, and nanopore size mainly concentrates under 30 nm. The average fractal dimension D1 of all the samples is 2.1187, varying from 1.1755 to 2.6122, and the average fractal dimension D2 is 2.4645, with the range from 2.2144 to 2.7362. Compared with D1, D2 has stronger relationships with pore structure parameters, and can be used for analyzing pore structure characteristics.


Minerals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 127 ◽  
Author(s):  
Zhuo Li ◽  
Zhikai Liang ◽  
Zhenxue Jiang ◽  
Fenglin Gao ◽  
Yinghan Zhang ◽  
...  

The Lower Cretaceous Shahezi shales are the targets for lacustrine shale gas exploration in Changling Fault Depression (CFD), Southern Songliao Basin. In this study, the Shahezi shales were investigated to further understand the impacts of rock compositions, including organic matters and minerals on pore structure and fractal characteristics. An integrated experiment procedure, including total organic carbon (TOC) content, X-ray diffraction (XRD), field emission-scanning electron microscope (FE-SEM), low pressure nitrogen physisorption (LPNP), and mercury intrusion capillary pressure (MICP), was conducted. Seven lithofacies can be identified according to on a mineralogy-based classification scheme for shales. Inorganic mineral hosted pores are the most abundant pore type, while relatively few organic matter (OM) pores are observed in FE-SEM images of the Shahezi shales. Multimodal pore size distribution characteristics were shown in pore width ranges of 0.5–0.9 nm, 3–6 nm, and 10–40 nm. The primary controlling factors for pore structure in Shahezi shales are clay minerals rather than OM. Organic-medium mixed shale (OMMS) has the highest total pore volumes (0.0353 mL/g), followed by organic-rich mixed shale (ORMS) (0.02369 mL/g), while the organic-poor shale (OPS) has the lowest pore volumes of 0.0122 mL/g. Fractal dimensions D1 and D2 (at relative pressures of 0–0.5 and 0.5–1 of LPNP isotherms) were obtained using the Frenkel–Halsey–Hill (FHH) method, with D1 ranging from 2.0336 to 2.5957, and D2 between 2.5779 and 2.8821. Fractal dimensions are associated with specific lithofacies, because each lithofacies has a distinctive composition. Organic-medium argillaceous shale (OMAS), rich in clay, have comparatively high fractal dimension D1. In addition, organic-medium argillaceous shale (ORAS), rich in TOC, have comparatively high fractal dimension D2. OPS shale contains more siliceous and less TOC, with the lowest D1 and D2. Factor analysis indicates that clay contents is the most significant factor controlling the fractal dimensions of the lacustrine Shahezi shale.


2021 ◽  
Vol 21 (1) ◽  
pp. 682-692
Author(s):  
Youzhi Wang ◽  
Cui Mao

The pore structure characteristic is an important index to measure and evaluate the storage capacity and fracturing coal reservoir. The coal of Baliancheng coalfield in Hunchun Basin was selected for experiments including low temperature nitrogen adsorption method, Argon Ion milling Scanning Electron Microscopy (Ar-SEM), Nuclear Magnetic Resonance (NMR), X-ray diffraction method, quantitative mineral clay analysis method. The pore structure of coal was quantitatively characterized by means of fractal theory. Meanwhile, the influences of pores fractal dimension were discussed with experiment data. The results show that the organic pores in Baliancheng coalfield are mainly plant tissue pores, interparticle pores and gas pores, and the mineral pores are corrosion pores and clay mineral pores. There are mainly slit pore and wedge-shaped pore in curve I of Low temperature nitrogen adsorption. There are ink pores in curve II with characteristics of a large specific surface area and average pore diameter. The two peaks of NMR T2 spectrum indicate that the adsorption pores are relatively developed and their connectivity is poor. The three peaks show the seepage pores and cracks well developed, which are beneficial to improve the porosity and permeability of coal reservoir. When the pore diameter is 2–100 nm, the fractal dimensions D1 and D2 obtained by nitrogen adsorption experiment. there are positive correlations between water content and specific surface area and surface fractal dimension D1, The fractal dimension D2 was positively and negatively correlated with ash content and average pore diameters respectively. The fractal dimensions DN1 and DN2 were obtained by using the NMR in the range of 0.1 μm˜10 μm. DN1 are positively correlated with specific surface area of adsorption pores. DN2 are positively correlated volume of seepage pores. The fractal dimension DM and dissolution hole fractal dimension Dc were calculated by SEM image method, respectively controlled by clay mineral and feldspar content. There is a remarkable positive correlation between D1 and DN1 and Langmuir volume of coal, so fractal dimension can effectively quantify the adsorption capacity of coal.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Yuqi Huang ◽  
Peng Zhang ◽  
Jinchuan Zhang ◽  
Xuan Tang ◽  
Chengwei Liu ◽  
...  

The pore structure of marine-continental transitional shales from the Longtan Formation in Guizhou, China, was investigated using fractal dimensions calculated by the FHH (Frenkel-Halsey-Hill) model based on low-temperature N2 adsorption data. Results show that the overall D 1 (fractal dimension under low relative pressure, P / P 0 ≤ 0.5 ) and D 2 (fractal dimension under high relative pressure, P / P 0 > 0.5 ) values of Longtan shales were relatively large, with average values of 2.7426 and 2.7838, respectively, indicating a strong adsorption and storage capacity and complex pore structure. The correlation analysis of fractal dimensions with specific surface area, average pore size, and maximum gas absorption volume indicates that D 1 can comprehensively characterize the adsorption and storage capacity of shales, while D 2 can effectively characterize the pore structure complexity. Further correlation among pore fractal dimension, shale organic geochemical parameters, and mineral composition parameters shows that there is a significant positive correlation between fractal dimensions and organic matter abundance as well as a complex correlation between fractal dimension and organic matter maturity. Fractal dimensions increase with an increase in clay mineral content and pyrite content but decrease with an increase in quartz content. Considering the actual geological evaluation and shale gas exploitation characteristics, a lower limit for D 1 and upper limit for D 2 should be set as evaluation criteria for favorable reservoirs. Combined with the shale gas-bearing property test results of Longtan shales in Guizhou, the favorable reservoir evaluation criteria are set as D 1 ≥ 2.60 and D 2 ≤ 2.85 . When D 1 is less than 2.60, the storage capacity of the shales is insufficient. When D 2 is greater than 2.85, the shale pore structure is too complicated, resulting in poor permeability and difficult exploitation.


2021 ◽  
Vol 21 (1) ◽  
pp. 343-353
Author(s):  
Wei-Dong Xie ◽  
Meng Wang ◽  
Xiao-Qi Wang ◽  
Yan-Di Wang ◽  
Chang-Qing Hu

Pore structure and fractal dimensions can characterize the adsorption, desorption and seepage characteristics of shale gas reservoirs. In this study, pore structure, fractal characteristics and influencing factors were studied of the Longmaxi formation shale gas reservoir in southeastern Chongqing, China. Scanning electron microscopy was used to describe the characteristics of various reservoirs. High pressure mercury intrusion and low temperature liquid N2 and CO2 adsorption experiments were used to obtain pore structure parameters. V–S model, FHH model and Menger sponge model were selected to calculate the micropore, mesopore and macropore fractal dimensions, respectively. The results show that organic matter pores, inter-granular pores, intra-granular pores and micro-fractures are developed within the shale, and the pore morphology is mostly ink pores and parallel plate pores with aperture essentially in the 1–2 nm and 2–50 nm ranges. Moreover, macropores are the most complex in these samples, with mesopores being less complex than macropores, and the micropores being the simplest. D1 (micropore fractal dimension) ranges from 2.31 to 2.50, D2 (mesopore fractal dimension) ranges from 2.74 to 2.83, D3 (macropore fractal dimension) ranges from 2.87 to 2.95, and Dt (comprehensive fractal dimension) ranges from 2.69 to 2.83 of fractal characteristics. D1 and D2 are mainly controlled by TOC content, while D3 and Dt are mainly controlled by brittle and clay mineral content. These results may be helpful for exploration and the development of shale gas in southeastern Chongqing, China.


2021 ◽  
Vol 21 (1) ◽  
pp. 727-740
Author(s):  
Zhi Xu ◽  
Ming Li ◽  
Yu Xu ◽  
Luwei Sun

Much attention has been recently paid to the Carboniferous-Permian coal-bearing strata in Shanxi Province, now the largest producing coalbed methane field in China. In this study, a comprehensive approach of mercury injection, low-temperature liquid nitrogen adsorption, and permeability experiments was adopted to investigate the structure and fractal characteristics of nanopores in the Carboniferous-Permian coal (with 0.77%˜3.04% Ro,ran). Based on the fractal model, two fractal dimensions D1 and D2 corresponding to diffusion pore (<65 nm) and seepage pore (pore size ≥65 nm), respectively, were calculated, and the relationships between the fractal dimensions with the pore structure parameters and permeability are discussed here. The results indicate that the studied coal samples have good fractal characteristics and that the calculated linear correlation coefficients are higher than 0.80. The fractal dimension D1 of the diffusion pores ranges from 2.3777 to 2.4624, with an average of 2.4173, while the fractal dimension D2 of the seepage pores is between 2.5844 and 2.6256, with an average of 2.5990. The fractal dimensions D1 of the diffusion pores increases with an increase in the BET specific surface area, vitrinite content, and Ro,ran while it decreases with an increase in the permeability, and has a weak correlation with the total pore volume. The correlation coefficients R2 for the fractal dimension D2 of the seepage pores, pore parameters, permeability, and maceral composition ranges from 0.0357 to 0.2551. These results indicate that uncertain relationships exist among these parameters.


Fractals ◽  
2019 ◽  
Vol 27 (01) ◽  
pp. 1940011 ◽  
Author(s):  
LEI CHEN ◽  
ZHENXUE JIANG ◽  
KEYU LIU ◽  
WEI YANG ◽  
SHU JIANG ◽  
...  

To better understand the nanopore characteristics and their effects on methane adsorption capacity of shales, we performed fractal analysis of nine shale samples collected from the fifth member of Upper Triassic Xujiahe Formation in the Sichuan Basin, southwest China. [Formula: see text] adsorption results show that shales have different adsorption characteristics at relative pressure of 0–0.5 and 0.5–1. Two fractal dimensions [Formula: see text] and [Formula: see text] were calculated using the Frenkel–Halsey–Hill (FHH) equation. Results show that the methane adsorption capacity increases with the increase of [Formula: see text] and [Formula: see text], of which [Formula: see text] has a more significant influence on adsorption capacity than [Formula: see text]. Further studies indicate that [Formula: see text] represents the pore surface fractal characteristics caused by the irregularity of shale surface, whereas [Formula: see text] represents the pore structure fractal characteristics, which is mainly affected by shale components (e.g. TOC, clay minerals) and pore parameters (e.g. average pore diameter, micropores content). A higher [Formula: see text] corresponds to a more irregular pore surface, which provides more space for methane adsorption. While a higher [Formula: see text] indicates a more complex pore structure and a stronger capillary condensation action on the pore surface, which in turn enhances the methane adsorption capacity.


2018 ◽  
Vol 37 (1) ◽  
pp. 273-295 ◽  
Author(s):  
Yang Gu ◽  
Wenlong Ding ◽  
Min Yin ◽  
Baocheng Jiao ◽  
Siyu Shi ◽  
...  

Organic-rich marine shale in South China has great potential for gas generation, and the pore structure has a considerable influence on the enrichment of shale gas. The nanoscale pore characteristics and fractal characteristics of the Niutitang shales in the Fenggang block were studied by means of methane adsorption and low-pressure nitrogen adsorption experiments, porosity and permeability tests, X-ray diffraction analyses, organic geochemical analyses, and field emission scanning electron microscopy. The fractal geometry of the pore structure was assessed, and the factors influencing the pore structure were determined. We used a fractal Frenkel–Halsey–Hill-based method to obtain the fractal dimensions D1 and D2 by nitrogen adsorption at relative pressures of 0–0.5 and 0.5–1, respectively. The relationships between the shale pore structure parameters and the fractal dimensions, the mineral composition, the total organic carbon content, and the pore structure parameters of shale are discussed. In addition, the significance of D1 and D2 and the implications of the fractal dimension for the adsorption capacity of shale are investigated. The results show that the two fractal dimensions are positively correlated with total organic carbon content and specific surface area, negatively correlated with quartz content and average pore diameter, but have a weak relationship with clay mineral content and total pore volume. The Niutitang shale samples are dominated by mesopores, and the pore structure is complicated. The results presented here indicate that fractal analyses represent an effective method of characterizing the complexity of pore structure.


Fractals ◽  
2018 ◽  
Vol 26 (02) ◽  
pp. 1840006 ◽  
Author(s):  
KUNJIE LI ◽  
FANGUI ZENG ◽  
JIANCHAO CAI ◽  
GUANGLONG SHENG ◽  
PENG XIA ◽  
...  

For the purpose of investigating the fractal characteristics of pores in Taiyuan formation shale, a series of qualitative and quantitative experiments were conducted on 17 shale samples from well HD-1 in Hedong coal field of North China. The results of geochemical experiments show that Total organic carbon (TOC) varies from 0.67% to 5.32% and the organic matters are in the high mature or over mature stage. The shale samples consist mainly of clay minerals and quartz with minor pyrite and carbonates. The FE-SEM images indicate that three types of pores, organic-related pores, inorganic-related pores and micro-fractures related pores, are developed well, and a certain number of intragranular pores are found inside quartz and carbonates formed by acid liquid corrosion. The pore size distributions (PSDs) broadly range from several to hundreds nanometers, but most pores are smaller than 10[Formula: see text]nm. As the result of different adsorption features at relative pressure (0–0.5) and (0.5–1) on the N2 adsorption isotherm, two fractal dimensions [Formula: see text] and [Formula: see text] were obtained with the Frenkel–Halsey–Hill (FHH) model. [Formula: see text] and [Formula: see text] vary from 2.4227 to 2.6219 and from 2.6049 to 2.7877, respectively. Both TOC and brittle minerals have positive effect on [Formula: see text] and [Formula: see text], whereas clay minerals, have a negative influence on them. The fractal dimensions are also influenced by the pore structure parameters, such as the specific surface area, BJH pore volume, etc. Shale samples with higher [Formula: see text] could provide more adsorption sites leading to a greater methane adsorption capacity, whereas shale samples with higher [Formula: see text] have little influence on methane adsorption capacity.


Sign in / Sign up

Export Citation Format

Share Document