Least-squares Kirchhoff migration using traveltimes based on the maximum amplitude criterion by the rapid expansion method

2015 ◽  
Author(s):  
Peterson Nogueira Santos* ◽  
Reynam C. Pestana
2017 ◽  
Vol 60 (4) ◽  
pp. 1053-1062
Author(s):  
Wei Wang ◽  
Min Huang ◽  
Qibing Zhu

Abstract. This article reports on using a Fourier series expansion method to extract features from hyperspectral scattering profiles for apple fruit firmness and soluble solids content (SSC) prediction. Hyperspectral scattering images of ‘Golden Delicious’ (GD), ‘Jonagold’ (JG), and ‘Delicious’ (RD) apples, harvested in 2009 and 2010, were acquired using an online hyperspectral imaging system over the wavelength region of 500 to 1000 nm. The moment method and Fourier series expansion method were used to analyze the scattering profiles of apples. The zeroth-first order moment (Z-FOM) spectra and Fourier coefficients were extracted from each apple, which were then used for developing fruit firmness and SSC prediction models using partial least squares (PLS) and least squares support vector machine (LSSVM). The PLS models based on the Fourier coefficients improved the standard errors of prediction (SEP) by 4.8% to 19.9% for firmness and by 2.4% to 13.5% for SSC, compared with the PLS models using the Z-FOM spectra. The LSSVM models for the prediction set of Fourier coefficients achieved better SEP results, with improvements of 4.4% to 11.3% for firmness and 2.8% to 16.5% for SSC over the LSSVM models for the Z-FOM spectra data and 3.7% to 12.6% for firmness and 5.4% to 8.6% for SSC over the PLS models for the Fourier coefficients. Experiments showed that Fourier series expansion provides a simple, fast, and effective means for improving Keywords: Apples, Firmness, Fourier series expansion, Hyperspectral scattering imaging, Least squares support vector machine, Partial least squares, Soluble solids content.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6054 ◽  
Author(s):  
Chi-Hyung Ahn ◽  
Dong-Ju Kim ◽  
Yong-Hoon Byun

The objective of this study is to develop a new vibration-free excavation method based on vermiculite expansion for rock cracking and to evaluate the performance of the heating system via elastic wave monitoring. Natural vermiculites expand rapidly in volume when heated above 800 °C. MgO powder is used to evenly transmit the surface temperature of a heater rod, which can attain high temperatures rapidly, to the vermiculites. The insertion direction of the heater rod greatly affects the expansion pressure. Three cuboid rock specimens are prepared and equipped with the heating system at different hole-to-face distances. Crack propagation is monitored by a pair of disk-shaped piezoelectric transducers. For short hole-to-face distances, the wave velocity and maximum amplitude rapidly decrease after certain time. For the greatest hole-to-face distance, the shear wave velocity remains constant during the test, while the maximum amplitude decreases after a certain time. The time taken for the velocity and amplitude of the shear waves to decrease reasonably corresponded to that taken for detectable crack propagation to occur on the surface of the rock specimen. The proposed method and materials may be useful from the viewpoints of rapid expansion, economy, and crack control.


Geophysics ◽  
2000 ◽  
Vol 65 (4) ◽  
pp. 1195-1209 ◽  
Author(s):  
Bertrand Duquet ◽  
Kurt J. Marfurt ◽  
Joe A. Dellinger

Because of its computational efficiency, prestack Kirchhoff depth migration is currently one of the most popular algorithms used in 2-D and 3-D subsurface depth imaging. Nevertheless, Kirchhoff algorithms in their typical implementation produce less than ideal results in complex terranes where multipathing from the surface to a given image point may occur, and beneath fast carbonates, salt, or volcanics through which ray‐theoretical energy cannot penetrate to illuminate underlying slower‐velocity sediments. To evaluate the likely effectiveness of a proposed seismic‐acquisition program, we could perform a forward‐modeling study, but this can be expensive. We show how Kirchhoff modeling can be defined as the mathematical transpose of Kirchhoff migration. The resulting Kirchhoff modeling algorithm has the same low computational cost as Kirchhoff migration and, unlike expensive full acoustic or elastic wave‐equation methods, only models the events that Kirchhoff migration can image. Kirchhoff modeling is also a necessary element of constrained least‐squares Kirchhoff migration. We show how including a simple a priori constraint during the inversion (that adjacent common‐offset images should be similar) can greatly improve the resulting image by partially compensating for irregularities in surface sampling (including missing data), as well as for irregularities in ray coverage due to strong lateral variations in velocity and our failure to account for multipathing. By allowing unstacked common‐offset gathers to become interpretable, the additional cost of constrained least‐squares migration may be justifiable for velocity analysis and amplitude‐variation‐with‐offset studies. One useful by‐product of least‐squares migration is an image of the subsurface illumination for each offset. If the data are sufficiently well sampled (so that including the constraint term is not necessary), the illumination can instead be calculated directly and used to balance the result of conventional migration, obtaining most of the advantages of least‐squares migration for only about twice the cost of conventional migration.


2017 ◽  
Vol 35 (4) ◽  
pp. 287
Author(s):  
Protásio Nery Andrade ◽  
Reynam Cruz Pestana ◽  
Daniel E. Revelo

ABSTRACT.  This paper proposes and describes the implementation of a new depth migration method in the frequency domain. The method, based in the reverse time migration (RTM) technique, extrapolates wavefields from the source and receivers to obtain migrated seismic images that are built directly into the frequency domain. In the proposed method, wavefields are propagated in the time domain and are then transformed into the frequency domain at each time extrapolation step through the discrete Fourier transform. Neither the forward nor backward wavefield is needed to be stored in memory or read from disk storage. To speed up the migration algorithm, the discrete Fourier transform kernel for each frequency is computed and salved before the time extrapolation procedure. At the imaging condition phase, both source and receiver wavefields are at the same frequency, so that, the construction of the image occurs by multiplying the forward source propagated wavefield with the backward propagated of the receivers wavefield for each frequency component. Subsequently, saving the source field at each step to later correlate it with the backpropagated receiver wave field, usually done in conventional RTM, becomes unnecessary. Nor is it necessary to invert a matrix for each frequency component, which is done in the migration technique that uses the Helmholtz equation solution in the frequency domain. Thus, the migration procedure in the frequency domain being proposed is more efficient from a computational point of view, and can also produce high quality migrated images as those produced by conventional RTM. The rapid expansion method (REM) is used for seismic forward modeling, which extrapolated data with good precision and free of numerical dispersion. Thus, with the transformed data at each step in the frequency domain, it is possible to construct high quality, in-depth seismic images at a lower computational cost. Moreover, this frequency domain migration with REM is an atractive strategy to design robust inverse algorithms, especially for 3D problems. To demonstrate the efficiency and applicability of the proposed method, two synthetic models were used and their results showed high quality images equivalent to those obtained by conventional RTM and thus proving the vality of the method. Keywords: wave equation migration, depth migration, imaging condition, frequency domain migration. RESUMO. Um método de migração em profundidade no domínio da frequência é proposto e implementado. O método consiste na extrapolação dos campos de ondas da fonte e dos receptores e baseia-se na técnica de migração reversa no tempo (da sigla em inglês, RTM), obtendo imagens sísmicas migradas, construídas diretamente no domínio da frequência. No método que estamos propondo, os campos de ondas são propagados no domínio do tempo e a cada passo de extrapolação são transformados para o domínio da frequência, através da transformada de Fourier discreta (do inglês, on-the-fly transform). Para acelerar o algoritmo de migração, o kernel da transformada de Fourier é calculado fora do loop do tempo. Além disso, na etapa de condição da imagem, os campos de onda, tanto da fonte como dos receptores, são calculados no mesmo instante de tempo, ou seja, a construção da imagem se dá através da multiplicação do campo de onda da fonte com o campo retropropagado dos receptores, para cada componente de frequência. Portanto, não precisamos salvar o campo da fonte a cada passo no tempo para posteriormente correlacionar com o campo de onda retropropagado dos receptores, como é usualmente feito na RTM convencional, nem é preciso inverter uma matriz para cada componente de frequência, como é realizado normalmente pela técnica de migração no domínio da frequência, utilizando a solução da equação de Helmholtz. Desta forma, o procedimento de migração no domínio da frequência que estamos propondo se torna mais eficiente do ponto de vista computacional, podendo produzir imagens migradas de alta qualidade, quando comparadas às obtidas através da RTM convencional no domínio do tempo. Para a extrapolação dos campos de ondas no tempo foi empregado o método de expansão rápida (da sigla em inglês, REM), que permite a extrapolação dos dados com boa precisão e livres de dispersão numérica. Desta forma, com os dados transformados para o domínio da frequência, a cada passo no tempo, é possível a construção de imagens sísmicas em profundidade de boa qualidade e a um menor custo computacional. Para demonstrar a eficiência e aplicabilidade do método proposto, dois modelos sintéticos foram usados e seus resultados apresentaram imagens de alta qualidade equivalentes às obtidas pela RTM convencional. Palavras-chave: equação de migração da onda, migração, condição de imagem, migração no domínio da frequência.


2016 ◽  
Vol 34 (3) ◽  
Author(s):  
Peterson Nogueira Santos ◽  
Reynam C. Pestana

ABSTRACT. Full-waveform inversion (FWI) is a powerful method and it has been used successfully to invert subsurface parameters. It consists basically on the minimization of the difference between the predicted and observed data. However, its application using finite-difference schemes is limited to low frequency content and the increase of the range of higher frequency...Keywords: full waveform inversion, preconditioning method, rapid expansion method. RESUMO. Inversão de forma de onda completa (FWI) é um método poderoso e tem sido utilizado com sucesso para inverter parâmetros de subsuperfície. Consiste basicamente na minimização da diferença entre os dados previstos e observados.No entanto, sua aplicação usando esquemas de diferenças finitas é limitada ao conteúdo de baixa frequência e o aumento da banda...Palavras-chave: inversão completa da forma de onda, método de pré-condicionamento, método de expansão rápida.


2002 ◽  
Vol 50 (6) ◽  
pp. 577-588 ◽  
Author(s):  
Sergey Fomel ◽  
James G. Berryman ◽  
Robert G. Clapp ◽  
Marie Prucha

Sign in / Sign up

Export Citation Format

Share Document