Overpressure prediction and elastic-property modeling in carbonate formation using well-logging data

Author(s):  
Yukun Liu ◽  
Sheng He
Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6034
Author(s):  
Marek Stadtműller ◽  
Paulina I. Krakowska-Madejska ◽  
Grzegorz Leśniak ◽  
Jadwiga A. Jarzyna

This article presents a novel methodology for data integration including laboratory data, the results of standard well logging measurements and interpretation and the interpretation of XRMI imager data for determination of the porosity and permeability of the fracture system in carbonate rock. An example of the results of the micro computed tomography applied for carbonate rock is included. Data were obtained on the area of the Polish Lowland Zechstein Main Dolomite formation. The input set of data included the results of mercury injection porosimetry (MICP), thin section and polished section analysis, well logging measurements and comprehensive interpretation and micro computed tomography. The methodology of the macrofractures’ analysis based on borehole wall imagery as well as estimation of their aperture was described in detail. The petrophysical characteristics of the fracture systems were analyzed as an element of standard interpretation of well logging data along a carbonate formation. The results of permeability determination, with micro-, mezzo- and macrofractures’ presence in the rock taken into consideration, were compared with outcomes of the drill stem tests (DSTs).


2021 ◽  
Vol 873 (1) ◽  
pp. 012028
Author(s):  
I N Kumalasari ◽  
I S Winardhi

Abstract The complexity of the pore shape in carbonate rocks causes the need for a special strategy to characterize carbonate reservoir. The more information used, the more accurate the reservoir characterization will be. Pore type analysis is the important study because it relates to the fluid flow properties. The elastic property modeling show a good match to the actual data. The results of the well log and petrophysical data analysis show that the gas zone is located at the upper side of Kujung I Formation. Based on rock physics modeling result, the possible pore type developing in the Kujung I Formation is reference pore with the dominance of the aspect ratio value of about 0.17-0.19. The carbonate layer containing hydrocarbons is characterized by low Lamda-Rho, Lamda/Mu values and a low Poisson ratio. Porous carbonate layer, characterized by a low Mu-Rho value. The slice results show that the gaseous area is located on the anticline. The zone that has good porosity indicated by low Mu-Rho. In the IN-3 well there are no hydrocarbons, this analysis is in accordance with the geological condition of the IN-3 well which is in a low area on the time structure map. The inversion results show a good match between CPEI against water saturation log and CPEI against porosity log.


2019 ◽  
Vol 67 (6) ◽  
pp. 1933-1943 ◽  
Author(s):  
Marek Stadtműller

Abstract The article presents the methodology for the qualitative determination of fracture zones in the profiles of carbonate formations, based on the complex fracture analysis (CFA) method. Three additive fracture ranges were distinguished, characterized by successively increasing aperture and fracture length values, operatively named micro, meso and macro. Furthermore, the quantitative characterization of fractures with different apertures was done. The methodology of laboratory data integration, fracture porosity and fracture permeability measurements performed on thin section and polished section was described as part of the quantitative well logging data interpretation procedure which uses the FPI (fracture porosity index) parameter. The research was performed in the Lower Carboniferous limestone formation that builds the Paleozoic basement of the Carpathian orogeny. An original software dedicated to the analysis of the wellbore images, obtained with the XRMI Halliburton scanner, was used to identify the presence of macro-fractures, determine their aperture and estimate fractures porosity and permeability in the profile of the analyzed rock formation. As a result of the work, postulates regarding the methodology for collecting research material were formulated, in particular: the scope of different laboratory core samples measurements and well log types. The principles of the optimal methodology for identifying fractured zones and quantitative evaluation of petrophysical parameters of recognized fracture systems were defined.


2000 ◽  
Author(s):  
S. Woll ◽  
V. Loebs ◽  
C. Phelps ◽  
H. Pippin ◽  
D. Grandall ◽  
...  

Author(s):  
Michael Nolan

The conversion of CO<sub>2</sub> to fuels is of significant importance in enabling the production of sustainable fuels, contributing to alleviating greenhouse gas emissions. While there are a number of key steps required to convert CO<sub>2</sub>, the initial step of adsorption and activation by the catalyst is critical. Well-known metal oxides such as oxidised TiO<sub>2</sub> or CeO<sub>2</sub> are unable to promote this step. In addressing this difficult problem, recent experimental work shows the potential for bismuth-containing materials to activate and convert CO<sub>2</sub>, but the origin of this activity is not yet clear. Additionally, nanostructures can show enhanced activity towards CO<sub>2</sub>. In this paper we present density functional theory (DFT) simulations of CO<sub>2</sub> activation on heterostructured materials composed of extended rutile and anatase TiO<sub>2</sub> surfaces modified with nanoclusters with Bi<sub>2</sub>O<sub>3</sub> stoichiometry. These heterostructures show low coordinated Bi sites in the nanoclusters and a valence band edge that is dominated by Bi-O states. These two factors mean that supported Bi<sub>2</sub>O<sub>3</sub> nanoclusters are able to adsorb and activate CO<sub>2</sub>. Computed adsorption energies lie in the range of -0.54 eV to -1.01 eV. In these strong adsorption modes, CO<sub>2</sub> is activated, in which the molecule bends giving O-C-O angles of 126 - 130<sup>o</sup> and elongation of C-O distances up to 1.28 Å, with no carbonate formation. The electronic properties show a strong CO<sub>2</sub>-Bi-oxygen interaction that drives the interaction of CO<sub>2</sub> to induce the structural distortions. Bi<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub> heterostructures can be reduced to form Bi<sup>2+</sup> and Ti<sup>3+</sup> species. The interaction of CO<sub>2</sub> with this electron-rich, reduced system can produce CO directly, reoxidising the heterostructure or form an activated carboxyl species (CO<sub>2</sub><sup>-</sup>) through electron transfer from the heterostructure to CO<sub>2</sub>. These results highlight that a semiconducting metal oxide modified with suitable metal oxide nanoclusters can activate CO<sub>2</sub>, thus overcoming the difficulties associated with the difficult first step in CO<sub>2</sub> conversion.


Sign in / Sign up

Export Citation Format

Share Document