Prediction method of pore structure parameters of tight sandstone

Author(s):  
Xianggang Fan ◽  
Guangzhi Zhang ◽  
Jiajia Zhang
2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Chunsheng Yu ◽  
Qi Jiang ◽  
Na Su ◽  
Lin Chang

Abstract In this research, experimental and mathematical modeling were carried out to estimate the permeability of tight sandstones. The pore structure parameters such as the number of pores, pore cross-sectional area, and pore radius were obtained by microcomputed tomography (micro-CT) scanning and image processing. A mathematical model was developed to predict the permeability of tight sandstones using the pore structure parameters. In the model, hydraulic radius was used to estimate the pore hydraulic conductance, where the pore diameter variation in a sinusoidal manner was observed. The stereological correction factor was used to characterize the arbitrary angle between the pore axis and the cross-sectional area. The tortuosity model was applied to characterize the behavior of non-Darcy flow inside the tight formations. Finally, the permeability prediction model was developed based on the effective medium theory. The proposed model was validated by 21 tight sandstone samples, with the relative errors within ±20%. In addition, due to the presence of small pores in tight sandstone with little contribution to overall permeability, the permeability shows inversely proportional behavior against the number of small pores.


2021 ◽  
Author(s):  
Lijun Guan ◽  
Wei Zhang ◽  
Ping Zhang ◽  
Yuqing Yang ◽  
Weiping Cui ◽  
...  

Abstract Tight sandstone reservoirs characterization and evaluation is very difficult based on conventional well log data owing to the extremely low porosity and permeability, and strong heterogeneity. The main accumulation spaces of conventional reservoirs are intergranular pores, and the pore size is the main controlling factor of permeability. However, besides intergranular pores, fractures play much greater important role in accumulating hydrocarbon, improving the pore connectivity and pore structure in tight sandstone reservoirs. Hence, it should be accurately predicted the pore structure dredged by fractures to improve the characterization of tight sandstone reservoirs. Generally, nuclear magnetic resonance (NMR) logging is an effective method to evaluate formation pore structure. However, it cannot be well used in fractured reservoirs because the NMR T2 spectra has no any response for fractures with width <2mm. The borehole electrical image log is usable in characterizing fractured reservoirs. The pore spectrum, which is extracted from the borehole electrical image log, can be used to qualitatively reflect the pore size. Hence, it will play an important role in fractured reservoirs pore structure characterization. In this study, based on the comprehensive analysis of the pore spectra, the corresponding mercury injection capillary pressure (MICP) data and pore-throat radius distributions acquired from core samples, a relationship that connects the 1/POR and capillary pressure (Pc) is proposed. Established a model based on formation classification to transform porosity spectrum into pseudo capillary pressure curve. In addition, a Swanson parameter-based permeability prediction model is also developed to extract fractured formation permeability. Meanwhile, to verify the superiority and otherness of borehole electrical image and NMR log, the model that evaluated reservoirs pore structure from NMR log is also established. Based on the application of the proposed method and models in actual formations, the evaluated pore structure parameters and permeabilities from two types of well log data are compared. The results illustrates that in formations with relative good pore structure, the predicted pore structure parameters and permeabilities from these two types of well log data agree well with the drill stem testing data and core-derived result. However, in low permeability sandstones with relatively poor pore structure, the porosity spectra can be well used to evaluate the pore structure, whereas the characterized pore structure from NMR log is overestimated. With the comprehensive research of reservoirs pore structure and permeability, the fractured tight sandstone formations with development value are precisely identified. This proposed method has greatest advantages that the pore structure of fractured reservoirs can be characterized, and the contribution of fractures to the pore connectivity and permeability can be quantified. it is usable in tight sandstone reservoirs validity prediction.


2021 ◽  
pp. 1-59
Author(s):  
Kai Lin ◽  
Xilei He ◽  
Bo Zhang ◽  
Xiaotao Wen ◽  
Zhenhua He ◽  
...  

Most of current 3D reservoir’s porosity estimation methods are based on analyzing the elastic parameters inverted from seismic data. It is well-known that elastic parameters vary with pore structure parameters such as pore aspect ratio, consolidate coefficient, critical porosity, etc. Thus, we may obtain inaccurate 3D porosity estimation if the chosen rock physics model fails properly address the effects of pore structure parameters on the elastic parameters. However, most of current rock physics models only consider one pore structure parameter such as pore aspect ratio or consolidation coefficient. To consider the effect of multiple pore structure parameters on the elastic parameters, we propose a comprehensive pore structure (CPS) parameter set that is generalized from the current popular rock physics models. The new CPS set is based on the first order approximation of current rock physics models that consider the effect of pore aspect ratio on elastic parameters. The new CPS set can accurately simulate the behavior of current rock physics models that consider the effect of pore structure parameters on elastic parameters. To demonstrate the effectiveness of proposed parameters in porosity estimation, we use a theoretical model to demonstrate that the proposed CPS parameter set properly addresses the effect of pore aspect ratio on elastic parameters such as velocity and porosity. Then, we obtain a 3D porosity estimation for a tight sand reservoir by applying it seismic data. We also predict the porosity of the tight sand reservoir by using neural network algorithm and a rock physics model that is commonly used in porosity estimation. The comparison demonstrates that predicted porosity has higher correlation with the porosity logs at the blind well locations.


2018 ◽  
Vol 15 (2) ◽  
pp. 449-460 ◽  
Author(s):  
Changsheng Duan ◽  
Jixin Deng ◽  
Yue Li ◽  
Yongjie Lu ◽  
Zhengyan Tang ◽  
...  

Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2242 ◽  
Author(s):  
Zhihao Jiang ◽  
Zhiqiang Mao ◽  
Yujiang Shi ◽  
Daxing Wang

Pore structure determines the ability of fluid storage and migration in rocks, expressed as porosity and permeability in the macroscopic aspects, and the pore throat radius in the microcosmic aspects. However, complex pore structure and strong heterogeneity make the accurate description of the tight sandstone reservoir of the Triassic Yanchang Formation, Ordos Basin, China still a problem. In this paper, mercury injection capillary pressure (MICP) parameters were applied to characterize the heterogeneity of pore structure, and three types of pore structure were divided, from high to low quality and defined as Type I, Type II and Type III, separately. Then, the multifractal analysis based on the MICP data was conducted to investigate the heterogeneity of the tight sandstone reservoir. The relationships among physical properties, MICP parameters and a series of multifractal parameters have been detailed analyzed. The results showed that four multifractal parameters, singularity exponent parameter (αmin), generalized dimension parameter (Dmax), information dimension (D1), and correlation dimension (D2) were in good correlations with the porosity and permeability, which can well characterize the pore structure and reservoir heterogeneity of the study area, while the others didn’t respond well. Meanwhile, there also were good relationships between these multifractal and MICP parameters.


Sign in / Sign up

Export Citation Format

Share Document