High-resolution Bayesian adaptive impedance inversion method and application

Author(s):  
Yaneng Luo ◽  
Yajun Chen ◽  
Ruifeng Jin ◽  
Jingbin Cui ◽  
Zhonghong Wan ◽  
...  
Geophysics ◽  
2013 ◽  
Vol 78 (5) ◽  
pp. R185-R195 ◽  
Author(s):  
Daniel O. Pérez ◽  
Danilo R. Velis ◽  
Mauricio D. Sacchi

A new inversion method to estimate high-resolution amplitude-versus-angle attributes (AVA) attributes such as intercept and gradient from prestack data is presented. The proposed technique promotes sparse-spike reflectivities that, when convolved with the source wavelet, fit the observed data. The inversion is carried out using a hybrid two-step strategy that combines fast iterative shrinkage-thresholding algorithm (FISTA) and a standard least-squares (LS) inversion. FISTA, which can be viewed as an extension of the classical gradient algorithm, provides sparse solutions by minimizing the misfit between the modeled and the observed data, and the [Formula: see text]-norm of the solution. FISTA is used to estimate the location in time of the main reflectors. Then, LS is used to retrieve the appropriate reflectivity amplitudes that honor the data. FISTA, like other iterative solvers for [Formula: see text]-norm regularization, does not require matrices in explicit form, making it easy to apply, economic in computational terms, and adequate for solving large-scale problems. As a consequence, the FISTA+LS strategy represents a simple and cost-effective new procedure to solve the AVA inversion problem. Results on synthetic and field data show that the proposed hybrid method can obtain high-resolution AVA attributes from noisy observations, making it an interesting alternative to conventional methods.


2013 ◽  
Vol 9 (S302) ◽  
pp. 142-143
Author(s):  
J. D. do Nascimento ◽  
P. Petit ◽  
M. Castro ◽  
G. F. Porto de Mello ◽  
S. V. Jeffers ◽  
...  

Abstractκ1 Cet (HD 20630, HIP 15457, d = 9.16 pc, V = 4.84) is a dwarf star approximately 30 light-years away in the equatorial constellation of Cetus. Among the solar proxies studied in the Sun in Time, κ1 Cet stands out as potentially having a mass very close to solar and a young age. On this study, we monitored the magnetic field and the chromospheric activity from the Ca II H & K lines of κ1 Cet. We used the technique of Least-Square-Deconvolution (LSD, Donati et al. 1997) by simultaneously extracting the information contained in all 8,000 photospheric lines of the echelogram (for a linelist matching an atmospheric model of spectral type K1). To reconstruct a reliable magnetic map and characterize the surface differential rotation of κ1 Cet we used 14 exposures spread over 2 months, in order to cover at least two rotational cycles (Prot ~9.2 days). The Least Square deconvolution (LSD) technique was applied to detect the Zeeman signature of the magnetic field in each of our 14 observations and to measure its longitudinal component. In order to reconstruct the magnetic field geometry of κ1 Cet, we applied the Zeeman Doppler Imaging (ZDI) inversion method. ZDI revealed a structure in the radial magnetic field consisting of a polar magnetic spot. On this study, we present the fisrt look results of a high-resolution spectropolarimetric campaign to characterize the activity and the magnetic fields of this young solar proxy.


2015 ◽  
Vol 15 (22) ◽  
pp. 32469-32518 ◽  
Author(s):  
Z. Tan ◽  
Q. Zhuang ◽  
D. K. Henze ◽  
C. Frankenberg ◽  
E. Dlugokencky ◽  
...  

Abstract. Understanding methane emissions from the Arctic, a fast warming carbon reservoir, is important for projecting changes in the global methane cycle under future climate scenarios. Here we optimize Arctic methane emissions with a nested-grid high-resolution inverse model by assimilating both high-precision surface measurements and column-average SCIAMACHY satellite retrievals of methane mole fraction. For the first time, methane emissions from lakes are integrated into an atmospheric transport and inversion estimate, together with prior wetland emissions estimated by six different biogeochemical models. We find that, the global methane emissions during July 2004–June 2005 ranged from 496.4 to 511.5 Tg yr−1, with wetland methane emissions ranging from 130.0 to 203.3 Tg yr−1. The Arctic methane emissions during July 2004–June 2005 were in the range of 14.6–30.4 Tg yr−1, with wetland and lake emissions ranging from 8.8 to 20.4 Tg yr−1 and from 5.4 to 7.9 Tg yr−1 respectively. Canadian and Siberian lakes contributed most of the estimated lake emissions. Due to insufficient measurements in the region, Arctic methane emissions are less constrained in northern Russia than in Alaska, northern Canada and Scandinavia. Comparison of different inversions indicates that the distribution of global and Arctic methane emissions is sensitive to prior wetland emissions. Evaluation with independent datasets shows that the global and Arctic inversions improve estimates of methane mixing ratios in boundary layer and free troposphere. The high-resolution inversions provide more details about the spatial distribution of methane emissions in the Arctic.


2018 ◽  
Author(s):  
Gan Zhang ◽  
Jingye Li ◽  
Lin Zhou ◽  
Xiaohong Chen ◽  
Chen Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document