scholarly journals Mapping pan-Arctic methane emissions at high spatial resolution using an adjoint atmospheric transport and inversion method and process-based wetland and lake biogeochemical models

2015 ◽  
Vol 15 (22) ◽  
pp. 32469-32518 ◽  
Author(s):  
Z. Tan ◽  
Q. Zhuang ◽  
D. K. Henze ◽  
C. Frankenberg ◽  
E. Dlugokencky ◽  
...  

Abstract. Understanding methane emissions from the Arctic, a fast warming carbon reservoir, is important for projecting changes in the global methane cycle under future climate scenarios. Here we optimize Arctic methane emissions with a nested-grid high-resolution inverse model by assimilating both high-precision surface measurements and column-average SCIAMACHY satellite retrievals of methane mole fraction. For the first time, methane emissions from lakes are integrated into an atmospheric transport and inversion estimate, together with prior wetland emissions estimated by six different biogeochemical models. We find that, the global methane emissions during July 2004–June 2005 ranged from 496.4 to 511.5 Tg yr−1, with wetland methane emissions ranging from 130.0 to 203.3 Tg yr−1. The Arctic methane emissions during July 2004–June 2005 were in the range of 14.6–30.4 Tg yr−1, with wetland and lake emissions ranging from 8.8 to 20.4 Tg yr−1 and from 5.4 to 7.9 Tg yr−1 respectively. Canadian and Siberian lakes contributed most of the estimated lake emissions. Due to insufficient measurements in the region, Arctic methane emissions are less constrained in northern Russia than in Alaska, northern Canada and Scandinavia. Comparison of different inversions indicates that the distribution of global and Arctic methane emissions is sensitive to prior wetland emissions. Evaluation with independent datasets shows that the global and Arctic inversions improve estimates of methane mixing ratios in boundary layer and free troposphere. The high-resolution inversions provide more details about the spatial distribution of methane emissions in the Arctic.

2016 ◽  
Vol 16 (19) ◽  
pp. 12649-12666 ◽  
Author(s):  
Zeli Tan ◽  
Qianlai Zhuang ◽  
Daven K. Henze ◽  
Christian Frankenberg ◽  
Ed Dlugokencky ◽  
...  

Abstract. Understanding methane emissions from the Arctic, a fast-warming carbon reservoir, is important for projecting future changes in the global methane cycle. Here we optimized methane emissions from north of 60° N (pan-Arctic) regions using a nested-grid high-resolution inverse model that assimilates both high-precision surface measurements and column-average SCanning Imaging Absorption spectroMeter for Atmospheric CHartogrphY (SCIAMACHY) satellite retrievals of methane mole fraction. For the first time, methane emissions from lakes were integrated into an atmospheric transport and inversion estimate, together with prior wetland emissions estimated with six biogeochemical models. In our estimates, in 2005, global methane emissions were in the range of 496.4–511.5 Tg yr−1, and pan-Arctic methane emissions were in the range of 11.9–28.5 Tg yr−1. Methane emissions from pan-Arctic wetlands and lakes were 5.5–14.2 and 2.4–14.2 Tg yr−1, respectively. Methane emissions from Siberian wetlands and lakes are the largest and also have the largest uncertainty. Our results indicate that the uncertainty introduced by different wetland models could be much larger than the uncertainty of each inversion. We also show that assimilating satellite retrievals can reduce the uncertainty of the nested-grid inversions. The significance of lake emissions cannot be identified across the pan-Arctic by high-resolution inversions, but it is possible to identify high lake emissions from some specific regions. In contrast to global inversions, high-resolution nested-grid inversions perform better in estimating near-surface methane concentrations.


2014 ◽  
Vol 11 (10) ◽  
pp. 14587-14637 ◽  
Author(s):  
A. Berchet ◽  
I. Pison ◽  
F. Chevallier ◽  
J.-D. Paris ◽  
P. Bousquet ◽  
...  

Abstract. Eight surface observation sites providing quasi-continuous measurements of atmospheric methane mixing ratios have been operated since the mid-2000's in Siberia. For the first time in a single work, we assimilate all of these in situ data in an atmospheric inversion. Our objective is to quantify methane surface fluxes from anthropogenic and wetland sources at the meso-scale in the Siberian Lowlands for the year 2010. To do so, we first inquire into the way the inversion uses the observations and the fluxes are constrained by the observation sites. As atmospheric inversions at the meso-scale suffer from mis-quantified sources of uncertainties, we follow recent innovations in inversion techniques and use a new inversion approach which quantifies the uncertainties more objectively than the previous inversions. We find that, due to errors in the representation of the atmospheric transport and redundant pieces of information, only one observation every few days is found valuable by the inversion. The remaining high-resolution signals are representative of very local emission patterns. An analysis of the use of information by the inversion also reveals that the observation sites constrain methane emissions within a radius of 500 km. More observation sites are necessary to constrain the whole Siberian Lowlands. Still, the fluxes within the constrained areas are quantified with objectified uncertainties. At the end, the tolerance intervals for posterior methane fluxes are of roughly 20% (resp. 50%) of the fluxes for anthropogenic (resp. wetland) sources. About 50–70% of emissions are constrained by the inversion on average on an annual basis. Extrapolating the figures on the constrained areas to the whole Siberian Lowlands, we find a regional methane budget of 5–28 Tg CH4 for the year 2010, i.e. 1–5% of the global methane emissions. As very few in situ observations are available in the region of interest, observations of methane total columns from the Greenhouse Gas Observing SATellite (GOSAT) are used for the evaluation of the inversion results, but they exhibit marginal signal from the fluxes within the region of interest.


2020 ◽  
Vol 20 (3) ◽  
pp. 1795-1816 ◽  
Author(s):  
Ingrid Super ◽  
Stijn N. C. Dellaert ◽  
Antoon J. H. Visschedijk ◽  
Hugo A. C. Denier van der Gon

Abstract. Quantification of greenhouse gas emissions is receiving a lot of attention because of its relevance for climate mitigation. Complementary to official reported bottom-up emission inventories, quantification can be done with an inverse modelling framework, combining atmospheric transport models, prior gridded emission inventories and a network of atmospheric observations to optimize the emission inventories. An important aspect of such a method is a correct quantification of the uncertainties in all aspects of the modelling framework. The uncertainties in gridded emission inventories are, however, not systematically analysed. In this work, a statistically coherent method is used to quantify the uncertainties in a high-resolution gridded emission inventory of CO2 and CO for Europe. We perform a range of Monte Carlo simulations to determine the effect of uncertainties in different inventory components, including the spatial and temporal distribution, on the uncertainty in total emissions and the resulting atmospheric mixing ratios. We find that the uncertainties in the total emissions for the selected domain are 1 % for CO2 and 6 % for CO. Introducing spatial disaggregation causes a significant increase in the uncertainty of up to 40 % for CO2 and 70 % for CO for specific grid cells. Using gridded uncertainties, specific regions can be defined that have the largest uncertainty in emissions and are thus an interesting target for inverse modellers. However, the largest sectors are usually the best-constrained ones (low relative uncertainty), so the absolute uncertainty is the best indicator for this. With this knowledge, areas can be identified that are most sensitive to the largest emission uncertainties, which supports network design.


2019 ◽  
Author(s):  
Ingrid Super ◽  
Stijn N. C. Dellaert ◽  
Antoon J. H. Visschedijk ◽  
Hugo A. C. Denier van der Gon

Abstract. Quantification of greenhouse gas emissions is receiving a lot of attention, because of its relevance for climate mitigation. Quantification is often done with an inverse modelling framework, combining atmospheric transport models, prior gridded emission inventories and a network of atmospheric observations to optimize the emission inventories. An important aspect of such method is a correct quantification of the uncertainties in all aspects of the modelling framework. The uncertainties in gridded emission inventories are, however, not systematically analysed. In this work, a statistically coherent method is used to quantify the uncertainties in a high-resolution gridded emission inventory of CO2 and CO for Europe. We perform a range of Monte Carlo simulations to determine the effect of uncertainties in different inventory components, including the spatial and temporal distribution, on the uncertainty in total emissions and the resulting atmospheric mixing ratios. We find that the uncertainty in the total emissions for the selected domain are 1 % for CO2 and 6 % for CO. Introducing spatial disaggregation causes a significant increase in the uncertainty of up to 40 % for CO2 and 70 % for CO for specific grid cells. Using gridded uncertainties specific regions can be defined that have the largest uncertainty in emissions and are thus an interesting target for inverse modelers. However, the largest sectors are usually the best-constrained ones (low relative uncertainty), so the absolute uncertainty is the best indicator for this. With this knowledge areas can be identified that are most sensitive to the largest emission uncertainties, which supports network design.


2019 ◽  
Author(s):  
Heiko Bozem ◽  
Peter Hoor ◽  
Daniel Kunkel ◽  
Franziska Köllner ◽  
Johannes Schneider ◽  
...  

Abstract. The springtime composition of the Arctic lower troposphere is to a large extent controlled by transport of mid-latitude air masses into the Arctic, whereas during the summer precipitation and natural sources play the most important role. Within the Arctic region, there exists a transport barrier, known as the polar dome, which results from sloping isentropes. The polar dome, which varies in space and time, exhibits a strong influence on the transport of air masses from mid-latitudes, enhancing it during winter and inhibiting it during summer. Furthermore, a definition for the location of the polar dome boundary itself is quite sparse in the literature. We analyzed aircraft based trace gas measurements in the Arctic during two NETCARE airborne field camapigns (July 2014 and April 2015) with the Polar 6 aircraft of Alfred Wegener Institute Helmholtz Center for Polar and Marine Research (AWI), Bremerhaven, Germany, covering an area from Spitsbergen to Alaska (134° W to 17° W and 68° N to 83° N). For the spring (April 2015) and summer (July 2014) season we analyzed transport regimes of mid-latitude air masses travelling to the high Arctic based on CO and CO2 measurements as well as kinematic 10-day back trajectories. The dynamical isolation of the high Arctic lower troposphere caused by the transport barrier leads to gradients of chemical tracers reflecting different local chemical life times and sources and sinks. Particularly gradients of CO and CO2 allowed for a trace gas based definition of the polar dome boundary for the two measurement periods with pronounced seasonal differences. For both campaigns a transition zone rather than a sharp boundary was derived. For July 2014 the polar dome boundary was determined to be 73.5° N latitude and 299–303.5 K potential temperature, respectively. During April 2015 the polar dome boundary was on average located at 66–68.5° N and 283.5–287.5 K. Tracer-tracer scatter plots and probability density functions confirm different air mass properties inside and outside of the polar dome for the July 2014 and April 2015 data set. Using the tracer derived polar dome boundaries the analysis of aerosol data indicates secondary aerosol formation events in the clean summertime polar dome. Synoptic-scale weather systems frequently disturb this transport barrier and foster exchange between air masses from midlatitudes and polar regions. During the second phase of the NETCARE 2014 measurements a pronounced low pressure system south of Resolute Bay brought inflow from southern latitudes that pushed the polar dome northward and significantly affected trace gas mixing ratios in the measurement region. Mean CO mixing ratios increased from 77.9 ± 2.5 ppbv to 84.9 ± 4.7 ppbv from the first period to the second period. At the same time CO2 mixing ratios significantly dropped from 398.16 ± 1.01 ppmv to 393.81 ± 2.25 ppmv. We further analysed processes controlling the recent transport history of air masses within and outside the polar dome. Air masses within the spring time polar dome mainly experienced diabatic cooling while travelling over cold surfaces. In contrast air masses in the summertime polar dome were diabatically heated due to insolation. During both seasons air masses outside the polar dome slowly descended into the Arctic lower troposphere from above caused by radiative cooling. The ascent to the middle and upper troposphere mainly took place outside the Arctic, followed by a northward motion. Our results demonstrate the successful application of a tracer based diagnostic to determine the location of the polar dome boundary.


Tellus B ◽  
1988 ◽  
Vol 40B (5) ◽  
pp. 480-493 ◽  
Author(s):  
B. T. HARGRAVE ◽  
W. P. VASS ◽  
P. E. ERICKSON ◽  
B. R. FOWLER

2021 ◽  
Author(s):  
Elisie Kåresdotter ◽  
Zahra Kalantari

<p>Wetlands as large-scale nature-based solutions (NBS) provide multiple ecosystem services of local, regional, and global importance. Knowledge concerning location and vulnerability of wetlands, specifically in the Arctic, is vital to understand and assess the current status and future potential changes in the Arctic. Using available high-resolution wetland databases together with datasets on soil wetness and soil types, we created the first high-resolution map with full coverage of Arctic wetlands. Arctic wetlands' vulnerability is assessed for the years 2050, 2075, and 2100 by utilizing datasets of permafrost extent and projected mean annual average temperature from HadGEM2-ES climate model outputs for three change scenarios (RCP2.6, 4.5, and 8.5). With approximately 25% of Arctic landmass covered with wetlands and 99% being in permafrost areas, Arctic wetlands are highly vulnerable to changes in all scenarios, apart from RCP2.6 where wetlands remain largely stable. Climate change threatens Arctic wetlands and can impact wetland functions and services. These changes can adversely affect the multiple services this sort of NBS can provide in terms of great social, economic, and environmental benefits to human beings. Consequently, negative changes in Arctic wetland ecosystems can escalate land-use conflicts resulting from natural capital exploitation when new areas become more accessible for use. Limiting changes to Arctic wetlands can help maintain their ecosystem services and limit societal challenges arising from thawing permafrost wetlands, especially for indigenous populations dependent on their ecosystem services. This study highlights areas subject to changes and provides useful information to better plan for a sustainable and social-ecological resilient Arctic.</p><p>Keywords: Arctic wetlands, permafrost thaw, regime shift vulnerability, climate projection</p>


2021 ◽  
Author(s):  
Roberta Ivaldi ◽  
Maurizio Demarte ◽  
Massimiliano Nannini ◽  
Giuseppe Aquino ◽  
Cosimo Brancati ◽  
...  

<p>New hydro-oceanographic data were collected in the Arctic Ocean during HIGN NORTH20 marine geophysical campaign performed in July 2020, in a COVID-19 pandemic period. HIGH NORTH20 was developed as part of the IT-Navy HIGH NORTH program, a Pluriannual Joint Research Program in the Arctic devoted to contribute to oceans knowledge in order to ensure ocean science improving conditions for sustainable development of the Ocean in the aim of United Nations Decade of Ocean Science for Sustainable development and the GEBCO - SEABED 2030 project. In order to contribute in exploration and high-resolution seabed mapping new data was collected using a multibeam echosounder (EM 302 - 30 kHz). The particular sea ice environmental condition with open-sea allowed to survey and mapping the Molloy Hole, the deepest sector of the Arctic Ocean, a key area in the global geodynamics and oceanographic context. A 3D model of the Molloy Hole (804 km<sup>2</sup>) and the detection of the deepest seafloor (5567m - 79° 08.9’ N 002° 47.0’ E) was obtained with a 10x10m grid in compliance to the IHO standards.</p>


2016 ◽  
Author(s):  
Mike J. Newland ◽  
Patricia Martinerie ◽  
Emmanuel Witrant ◽  
Detlev Helmig ◽  
David R. Worton ◽  
...  

Abstract. The NOX (NO and NO2) and HOX (OH and HO2) budgets of the atmosphere exert a major influence on atmospheric composition, controlling removal of primary pollutants and formation of a wide range of secondary products, including ozone, that can influence human health and climate. However, there remain large uncertainties in the changes to these budgets over recent decades. Due to their short atmospheric lifetimes, NOX and HOX are highly variable in space and time, and so the measurements of these species are of very limited value for examining long term, large scale changes to their budgets. Here, we take an alternative approach by examining long-term atmospheric trends of alkyl nitrates, the formation of which is dependent on the atmospheric NO / HO2 ratio. We derive long term trends in the alkyl nitrates from measurements in firn air from the NEEM site, Greenland. Their mixing ratios increased by a factor of 4–5 between the 1970s and 1990s. This was followed by a steep decline to the sampling date of 2008. Moreover, we examine how the trends in the alkyl nitrates compare to similarly derived trends in their parent alkanes (i.e. the alkanes which, when oxidised in the presence of NOX, lead to the formation of the alkyl nitrates). The ratios of the alkyl nitrates to their parent alkanes increase from around 1970 to the late 1990's consistent with large changes to the [NO] / [HO2] ratio in the northern hemisphere atmosphere during this period. These could represent historic changes to NOX sources and sinks. Alternatively, they could represent changes to concentrations of the hydroxyl radical, OH, or to the transport time of the air masses from source regions to the Arctic.


Sign in / Sign up

Export Citation Format

Share Document