scholarly journals Dual-band generative learning for low-frequency extrapolation in seismic land data

Author(s):  
Oleg Ovcharenko ◽  
Vladimir Kazei ◽  
Daniel Peter ◽  
Ilya Silvestrov ◽  
Andrey Bakulin ◽  
...  
2021 ◽  
Vol 42 ◽  
pp. 1356-1360
Author(s):  
Gandu Srilekha ◽  
P. Pardhasaradhi ◽  
B.T.P. Madhav ◽  
M. VenkateswaraRao ◽  
M.C. Rao

2015 ◽  
Vol 9 (2) ◽  
pp. 447-452 ◽  
Author(s):  
Xi-Wang Dai ◽  
Tao Zhou ◽  
Bo-Ran Guan

A novel dual-band planar antenna with a low profile for mobile communication system is proposed in this paper. The antenna is composed of one shorted patch with two radiating notches for low frequency resonance and one square patch for high frequency resonance. The low profile is achieved via the shorting patch, which introduces the parallel electrical field between the reflector and antenna. A step-impedance microstrip line is used to feed the antenna. The coupling between the square patch and microstrip line cancels out the inductance of shorting probe, which increases the working bandwidth of proposed antenna. A prototype with a low profile of 0.0286λ is fabricated and measured. The antenna achieves dual impedance bandwidths of 1.6% for the low frequency band and 60% for the high frequency band, covering the frequency range 851–865 MHz and 1.97–3.65 GHz, respectively. The measured results show good agreements with the simulated ones.


2013 ◽  
Vol 655-657 ◽  
pp. 1614-1618
Author(s):  
Wen Ko ◽  
Man Long Her ◽  
Yu Lin Wang ◽  
Ming Wei Hsu

This paper studies a very simple structure for dual-band bandpass filter. Filter is composed of two asymmetric coupled resonator circuit by two sets of different size stepped impedance resonator. This circuit applied microstrip line, coupling principle and impedance ratio by controlling the stepped impedance resonator to control the center frequency 2.6/5.2 GHz of the first and the second bandpass filter. The basic structure of the filter is constituted by the three sections of transmission line and two sets of SIR, that is, in two gaps of the three sections of transmission line parallel connection the equivalent inductances and capacitor of the two sets of SIR in series with the resonant circuit (LCL) to constitute bandpass filter. The low frequency 2.6 GHz is through the upper half of low impedance SIR, and the high frequency 5.2 GHz is through the lower half of high impedance SIR. This paper presents the design of asymmetric SIR-based dual-band bandpass filter, the filter structure is simple, easy to produce and can control the characteristics of the passband center frequency. By electromagnet simulation software( IE3D ) to simulate, the actual production of the circuit using a vector analyzer measurement, simulation and measurement results show good consistency.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Ding-Bing Lin ◽  
Jui-Hung Chou ◽  
Son-On Fu ◽  
Hsueh-Jyh Li

A novel internal printed antenna suitable for triple long-term evolution (LTE) bands for handheld devices is presented. The operating bandwidths of the design are LTE700 (698~800 MHz), LTE2300 (2300~2400 MHz), and LTE2500 (2500~2690 MHz). Through the use of a C-shape broadside coupled feed structure, full operation in the lower band is achieved. The antenna itself uses two unequal path lengths to produce a low frequency band with two resonant modes. The required bandwidth is then adjusted using a couple feed, and finally placed over a ground plane via another C-type coupling element in order to enhance the two low-frequency matches. In the definition of the −6 dB reflection coefficient, the bandwidth of two basic modes in the low frequency band is 0.689~0.8 GHz. We adopt the definition of the −10 dB reflection coefficient for the high frequency mode, and its working frequency bands are shown to be 2.3~2.72 GHz. The antenna size is only 40 × 12 × 0.8 mm3with a ground plane of 98 × 40 mm2.


2018 ◽  
Vol 7 (3) ◽  
pp. 40-45 ◽  
Author(s):  
S. Nelaturi ◽  
N.V.S.N. Sarma

In this paper, a novel compact microstrip patch antenna is proposed for Wi- Fi and WiMAX bands. To achieve miniaturization the dimensions of the square radiating patch are chosen with reference to the high frequency band (3.3 GHz). The dual band is achieved by loading a Complementary Split Ring Resonator (CSRR) into the radiating patch. The left handed nature of the CSRR is the cause for low frequency band (2.4 GHz). To improve the return loss bandwidth and axial ratio bandwidth at upper band the fractal concept is introduced along the edges of the square patch. Thus a low volume dual band antenna is simulated using HFSS. A comparison with measured data is also presented. The fabricated antenna is found to be occupying 25% less volume (with reference to 2.4 GHz) than existing antennas which is mainly due to the blending of the two recent concepts ‘metamaterials and fractals’.


Sign in / Sign up

Export Citation Format

Share Document