T1 relaxation maps allow differentiation between pathologic tissue subsets in relapsing-remitting and secondary progressive multiple sclerosis

2004 ◽  
Vol 10 (5) ◽  
pp. 556-561 ◽  
Author(s):  
A Castriota-Scanderbeg ◽  
F Fasano ◽  
M Filippi ◽  
C Caltagirone

In an attempt to clarify whether T1 relaxation time mapping may assist in characterizing the pathological brain tissue substrate of multiple sclerosis (MS), we compared the T1 relaxation times of lesions, areas of normal-appearing white matter (NAWM) located proximal to lesions, and areas of NAWM located distant from lesions in 12 patients with the relapsing-remitting and 12 with the secondary progressive (SP) subtype of disease. Nine healthy volunteers served as controls. Calculated mean T1 values were averaged across all patients within each clinical group, and comparisons were made by means of the Mann-Whitney U-test. Significant differences were found between all investigated brain regions within each clinical subgroup. Significant differences were also detected for each investigated brain region among clinical subgroups. While T1 values of NAWM were significantly higher in patients with SP disease than in normal white matter (NWM) of controls, no differences were detected when corresponding brain areas of patients with RR MS were compared with NWM of controls. T1 maps identify areas of the brain that are damaged to a different extent in patients with MS, and may be of help in monitoring disease progression.

2013 ◽  
Vol 33 (9) ◽  
pp. 1394-1401 ◽  
Author(s):  
Eero Rissanen ◽  
Jere R Virta ◽  
Teemu Paavilainen ◽  
Jouni Tuisku ◽  
Semi Helin ◽  
...  

In this study, positron emission tomography (PET) imaging with a radioligand to adenosine A2A receptors (A2AR)—a potent regulator of inflammation—was used to gain insight into the molecular alterations in normal-appearing white matter (NAWM) and gray matter (GM) in secondary progressive multiple sclerosis (SPMS). Normal-appearing white matter and GM, despite seeming normal in conventional mangnetic resonance imaging (MRI), are important loci of widespread inflammation, neuronal damage, and source of progressive disability in multiple sclerosis (MS). Dynamic PET imaging using A2AR-specific [ 11 C]TMSX and brain MRI with diffusion tensor imaging were performed to eight SPMS patients and seven healthy controls. Distribution volumes ( VT) of [ 11 C]TMSX were analyzed from 13 regions of interest using Logan plot with arterial plasma input. The SPMS patients had significantly increased [ 11 C]TMSX- VT in NAWM compared with controls (mean (s.d.): 0.55 (± 0.08) vs. 0.45 (± 0.05); P = 0.036). Both the increased VT and the decreased fractional anisotropy (FA) in NAWM were associated with higher expanded disability status scale (EDSS) scores ( P = 0.030 and P = 0.012, respectively), whereas the T2-lesion load of SPMS patients did not correlate with EDSS. This study shows, that A2ARs are increased in the brain of SPMS patients, and that [ 11 C]TMSX-PET provides a novel approach to learn about central nervous system pathology in SPMS in vivo.


Brain ◽  
2020 ◽  
Vol 143 (10) ◽  
pp. 2973-2987 ◽  
Author(s):  
Russell Ouellette ◽  
Constantina A Treaba ◽  
Tobias Granberg ◽  
Elena Herranz ◽  
Valeria Barletta ◽  
...  

Abstract We used 7 T MRI to: (i) characterize the grey and white matter pathology in the cervical spinal cord of patients with early relapsing-remitting and secondary progressive multiple sclerosis; (ii) assess the spinal cord lesion spatial distribution and the hypothesis of an outside-in pathological process possibly driven by CSF-mediated immune cytotoxic factors; and (iii) evaluate the association of spinal cord pathology with brain burden and its contribution to neurological disability. We prospectively recruited 20 relapsing-remitting, 15 secondary progressive multiple sclerosis participants and 11 age-matched healthy control subjects to undergo 7 T imaging of the cervical spinal cord and brain as well as conventional 3 T brain acquisition. Cervical spinal cord imaging at 7 T was used to segment grey and white matter, including lesions therein. Brain imaging at 7 T was used to segment cortical and white matter lesions and 3 T imaging for cortical thickness estimation. Cervical spinal cord lesions were mapped voxel-wise as a function of distance from the inner central canal CSF pool to the outer subpial surface. Similarly, brain white matter lesions were mapped voxel-wise as a function of distance from the ventricular system. Subjects with relapsing-remitting multiple sclerosis showed a greater predominance of spinal cord lesions nearer the outer subpial surface compared to secondary progressive cases. Inversely, secondary progressive participants presented with more centrally located lesions. Within the brain, there was a strong gradient of lesion formation nearest the ventricular system that was most evident in participants with secondary progressive multiple sclerosis. Lesion fractions within the spinal cord grey and white matter were related to the lesion fraction in cerebral white matter. Cortical thinning was the primary determinant of the Expanded Disability Status Scale, white matter lesion fractions in the spinal cord and brain of the 9-Hole Peg Test and cortical thickness and spinal cord grey matter cross-sectional area of the Timed 25-Foot Walk. Spinal cord lesions were localized nearest the subpial surfaces for those with relapsing-remitting and the central canal CSF surface in progressive disease, possibly implying CSF-mediated pathogenic mechanisms in lesion development that may differ between multiple sclerosis subtypes. These findings show that spinal cord lesions involve both grey and white matter from the early multiple sclerosis stages and occur mostly independent from brain pathology. Despite the prevalence of cervical spinal cord lesions and atrophy, brain pathology seems more strongly related to physical disability as measured by the Expanded Disability Status Scale.


2016 ◽  
Vol 22 (11) ◽  
pp. 1429-1437 ◽  
Author(s):  
Kim A Meijer ◽  
Nils Muhlert ◽  
Mara Cercignani ◽  
Varun Sethi ◽  
Maria A Ron ◽  
...  

Background: While our knowledge of white matter (WM) pathology underlying cognitive impairment in relapsing remitting multiple sclerosis (MS) is increasing, equivalent understanding in those with secondary progressive (SP) MS lags behind. Objective: The aim of this study is to examine whether the extent and severity of WM tract damage differ between cognitively impaired (CI) and cognitively preserved (CP) secondary progressive multiple sclerosis (SPMS) patients. Methods: Conventional magnetic resonance imaging (MRI) and diffusion MRI were acquired from 30 SPMS patients and 32 healthy controls (HC). Cognitive domains commonly affected in MS patients were assessed. Linear regression was used to predict cognition. Diffusion measures were compared between groups using tract-based spatial statistics (TBSS). Results: A total of 12 patients were classified as CI, and processing speed was the most commonly affected domain. The final regression model including demographic variables and radial diffusivity explained the greatest variance of cognitive performance ( R2 = 0.48, p = 0.002). SPMS patients showed widespread loss of WM integrity throughout the WM skeleton when compared with HC. When compared with CP patients, CI patients showed more extensive and severe damage of several WM tracts, including the fornix, superior longitudinal fasciculus and forceps major. Conclusion: Loss of WM integrity assessed using TBSS helps to explain cognitive decline in SPMS patients.


2022 ◽  
Author(s):  
Yasuyuki Kihara ◽  
Yunjiao Zhu ◽  
Deepa Jonnalagadda ◽  
William Romanow ◽  
Carter Palmer ◽  
...  

Multiple sclerosis (MS) is an immune-mediated demyelinating disease that alters central nervous system (CNS) functions. Relapsing-remitting MS (RRMS) is the most common form, which can transform into secondary-progressive MS (SPMS) that is associated with progressive neurodegeneration. Single-nucleus RNA sequencing (snRNA-seq) of MS lesions identified disease-related transcriptomic alterations; however, their relationship to non-lesioned MS brain regions has not been reported and which could identify prodromal or other disease susceptibility signatures. Here, snRNA-seq was used to generate high-quality RRMS vs. SPMS datasets of 33,197 nuclei from 8 normal-appearing MS brains, which revealed divergent cell type-specific changes. Notably, SPMS brains downregulated astrocytic sphingosine kinases (SPHK1/2), the enzymes required to phosphorylate and activate the MS drug, fingolimod. This reduction was modeled with astrocyte-specific Sphk1/2 null mice in which fingolimod lost activity, supporting functionality of observed transcriptomic changes. These data provide an initial resource for studies of single cells from non-lesioned RRMS and SPMS brains.


2012 ◽  
Vol 18 (11) ◽  
pp. 1577-1584 ◽  
Author(s):  
Lukas Filli ◽  
Louis Hofstetter ◽  
Pascal Kuster ◽  
Stefan Traud ◽  
Nicole Mueller-Lenke ◽  
...  

Background: Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system. MS lesions show a typical distribution pattern and primarily affect the white matter (WM) in the periventricular zone and in the centrum semiovale. Objective: To track lesion development during disease progression, we compared the spatiotemporal distribution patterns of lesions in relapsing–remitting MS (RRMS) and secondary progressive MS (SPMS). Methods: We used T1 and T2 weighted MR images of 209 RRMS and 62 SPMS patients acquired on two different 1.5 Tesla MR scanners in two clinical centers followed up for 25 (± 1.7) months. Both cross-sectional and longitudinal differences in lesion distribution between RRMS and SPMS patients were analyzed with lesion probability maps (LPMs) and permutation-based inference. Results: MS lesions clustered around the lateral ventricles and in the centrum semiovale. Cross-sectionally, compared to RRMS patients, the SPMS patients showed a significantly higher regional probability of T1 hypointense lesions ( p≤0.03) in the callosal body, the corticospinal tract, and other tracts adjacent to the lateral ventricles, but not of T2 lesions (peak probabilities were RRMS: T1 9%, T2 18%; SPMS: T1 21%, T2 27%). No longitudinal changes of regional T1 and T2 lesion volumes between baseline and follow-up scan were found. Conclusion: The results suggest a particular vulnerability to neurodegeneration during disease progression in a number of WM tracts.


2008 ◽  
Vol 389 (6) ◽  
Author(s):  
Isobel A. Scarisbrick ◽  
Rachel Linbo ◽  
Alexander G. Vandell ◽  
Mark Keegan ◽  
Sachiko I. Blaber ◽  
...  

Abstract Tissue kallikrein KLK1 and the kallikrein-related peptidases KLK2–15 are a subfamily of serine proteases that have defined or proposed roles in a range of central nervous system (CNS) and non-CNS pathologies. To further understand their potential activity in multiple sclerosis (MS), serum levels of KLK1, 6, 7, 8 and 10 were determined in 35 MS patients and 62 controls by quantitative fluorometric ELISA. Serum levels were then correlated with Expanded Disability Status Scale (EDSS) scores determined at the time of serological sampling or at last clinical follow-up. Serum levels of KLK1 and KLK6 were elevated in MS patients (p≤0.027), with highest levels associated with secondary progressive disease. Elevated KLK1 correlated with higher EDSS scores at the time of serum draw and KLK6 with future EDSS worsening in relapsing remitting patients (p≤0.007). Supporting the concept that KLK1 and KLK6 promote degenerative events associated with progressive MS, exposure of murine cortical neurons to either kallikrein promoted rapid neurite retraction and neuron loss. These novel findings suggest that KLK1 and KLK6 may serve as serological markers of progressive MS and contribute directly to the development of neurological disability by promoting axonal injury and neuron cell death.


2018 ◽  
Vol 4 (2) ◽  
pp. 205521731878334 ◽  
Author(s):  
Francisco Coret ◽  
Francisco C Pérez-Miralles ◽  
Francisco Gascón ◽  
Carmen Alcalá ◽  
Arantxa Navarré ◽  
...  

Background Disease-modifying therapies are thought to reduce the conversion rate to secondary progressive multiple sclerosis. Objective To explore the rate, chronology, and contributing factors of conversion to the progressive phase in treated relapsing–remitting multiple sclerosis patients. Methods Our study included 204 patients treated for relapsing–remitting multiple sclerosis between 1995 and 2002, prospectively followed to date. Kaplan–Meier analysis was applied to estimate the time until secondary progressive multiple sclerosis conversion, and multivariate survival analysis with a Cox regression model was used to analyse prognostic factors. Results Relapsing–remitting multiple sclerosis patients were continuously treated for 13 years (SD 4.5); 36.3% converted to secondary progressive multiple sclerosis at a mean age of 42.6 years (SD 10.6), a mean time of 8.2 years (SD 5.2) and an estimated mean time of 17.2 years (range 17.1–18.1). A multifocal relapse, age older than 34 years at disease onset and treatment failure independently predicted conversion to secondary progressive multiple sclerosis but did not influence the time to reach an Expanded Disability Status Scale of 6.0. Conclusions The favourable influence of disease-modifying therapies on long-term disability in relapsing–remitting multiple sclerosis is well established. However, the time to progression onset and the subsequent clinical course in treated patients seem similar to those previously reported in natural history studies. More studies are needed to clarify the effect of disease-modifying therapies once the progressive phase has been reached.


2004 ◽  
Vol 10 (2) ◽  
pp. 188-196 ◽  
Author(s):  
Emmanuelle Cassol ◽  
Jean-Philippe Ranjeva ◽  
Danielle Ibarrola ◽  
Claude Mékies ◽  
Claude Manelfe ◽  
...  

Our objectives were to determine the reproducibility of diffusion tensor imaging (DTI) in volunteers and to evaluate the ability of the method to monitor longitudinal changes occurring in the normal-appearing white matter (NAWM) of patients with multiple sclerosis (MS). DTI was performed three-mo nthly for one year in seven MS patients: three relapsing-remitting (RRMS), three secondary progressive (SPMS) and one relapsing SP. They were selected with a limited cerebral lesion load. Seven age- and sex-matched controls also underwent monthly examinations for three months. Diffusivity and anisotropy were quantified over the segmented whole supratentorial white matter, with the indices of trace (Tr) and fractional anisotropy (FA). Results obtained in volunteers show the reproducibility of the method. Patients had higher trace and lower anisotropy than matched controls (P B-0.0001). O ver the follow-up, both Tr and FA indicated a recovery after the acute phase in RRMS and a progressive shift towards abnormal values in SPMS. A lthough this result is not statistically significant, it suggests that DTI is sensitive to microscopic changes occurring in tissue of normal appearance in conventional images and could be useful for monitoring the course of the disease, even though it was unable to clearly distinguish between the various physiopathological processes involved.


Sign in / Sign up

Export Citation Format

Share Document