scholarly journals Resting-state neural network disturbances that underpin the emergence of emotional symptoms in adolescent girls: resting-state fMRI study

2019 ◽  
Vol 215 (3) ◽  
pp. 545-551 ◽  
Author(s):  
Gin S. Malhi ◽  
Pritha Das ◽  
Tim Outhred ◽  
Richard A. Bryant ◽  
Vince Calhoun

BackgroundSubsyndromal emotional symptoms in adolescence may represent precursors for full-blown emotional disorders in early adulthood. Understanding the neurobiological mechanisms that drive this development is essential for prevention.AimsSelf-referential processing and emotion regulation are remodelled substantively during adolescence, therefore this study examined integration of key neural networks involved in these processes.MethodAt baseline, clinical and resting-state functional magnetic resonance imaging data were collected for 88 adolescent girls (mean age 15 years), and 71 of these girls underwent repeat clinical assessment after 2 years. These 71 girls were then partitioned into two groups depending on the presence (ES+) or absence (ES−) of emotional symptoms, and differences in dynamic functional network connectivity were determined and correlated with clinical variables.ResultsThe two groups displayed a differential pattern of functional connectivity involving the left lateral prefrontal network (LPFN). Specifically, in the ES+ group this network displayed positive coupling with the right LPFN but negative coupling with the default mode network, and the inverse of this pattern was found in the ES− group. Furthermore, the coupling strengths between left and right LPFN at the irst time point predicted follow-up depression and state anxiety scores.ConclusionsOur findings suggest that in adolescent girls, emotional symptoms may emerge as a result of impaired integration between networks involved in self-referential information processing and approach-avoidance behaviours. These impairments can compromise the pursuit of important goals and have an impact on emotion processing and finally may lead to the development of emotional disorders, such as anxiety and depression in adulthood.Declaration of interestNone.

2020 ◽  
pp. 1-9
Author(s):  
Daniel Bergé ◽  
Tyler A. Lesh ◽  
Jason Smucny ◽  
Cameron S. Carter

Abstract Background Previous research in resting-state functional magnetic resonance imaging (rs-fMRI) has shown a mixed pattern of disrupted thalamocortical connectivity in psychosis. The clinical meaning of these findings and their stability over time remains unclear. We aimed to study thalamocortical connectivity longitudinally over a 1-year period in participants with recent-onset psychosis. Methods To this purpose, 129 individuals with recent-onset psychosis and 87 controls were clinically evaluated and scanned using rs-fMRI. Among them, 43 patients and 40 controls were re-scanned and re-evaluated 12 months later. Functional connectivity between the thalamus and the rest of the brain was calculated using a seed to voxel approach, and then compared between groups and correlated with clinical features cross-sectionally and longitudinally. Results At baseline, participants with recent-onset psychosis showed increased connectivity (compared to controls) between the thalamus and somatosensory and temporal regions (k = 653, T = 5.712), as well as decreased connectivity between the thalamus and left cerebellum and right prefrontal cortex (PFC; k = 201, T = −4.700). Longitudinal analyses revealed increased connectivity over time in recent-onset psychosis (relative to controls) in the right middle frontal gyrus. Conclusions Our results support the concept of abnormal thalamic connectivity as a core feature in psychosis. In agreement with a non-degenerative model of illness in which functional changes occur early in development and do not deteriorate over time, no evidence of progressive deterioration of connectivity during early psychosis was observed. Indeed, regionally increased connectivity between thalamus and PFC was observed.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Heng-Le Wei ◽  
Xin Zhou ◽  
Yu-Chen Chen ◽  
Yu-Sheng Yu ◽  
Xi Guo ◽  
...  

Abstract Background Resting-state functional magnetic resonance imaging (fMRI) has confirmed disrupted visual network connectivity in migraine without aura (MwoA). The thalamus plays a pivotal role in a number of pain conditions, including migraine. However, the significance of altered thalamo-visual functional connectivity (FC) in migraine remains unknown. The goal of this study was to explore thalamo-visual FC integrity in patients with MwoA and investigate its clinical significance. Methods Resting-state fMRI data were acquired from 33 patients with MwoA and 22 well-matched healthy controls. After identifying the visual network by independent component analysis, we compared neural activation in the visual network and thalamo-visual FC and assessed whether these changes were linked to clinical characteristics. We used voxel-based morphometry to determine whether functional differences were dependent on structural differences. Results The visual network exhibited significant differences in regions (bilateral cunei, right lingual gyrus and left calcarine sulcus) by inter-group comparison. The patients with MwoA showed significantly increased FC between the left thalami and bilateral cunei and between the right thalamus and the contralateral calcarine sulcus and right cuneus. Furthermore, the neural activation of the left calcarine sulcus was positively correlated with visual analogue scale scores (r = 0.319, p = 0.043), and enhanced FC between the left thalamus and right cuneus in migraine patients was negatively correlated with Generalized Anxiety Disorder scores (r = − 0.617, p = 0.005). Conclusion Our data suggest that migraine distress is exacerbated by aberrant feedback projections to the visual network, playing a crucial role in migraine physiological mechanisms. The current study provides further insights into the complex scenario of migraine mechanisms.


Cephalalgia ◽  
2017 ◽  
Vol 38 (7) ◽  
pp. 1237-1244 ◽  
Author(s):  
Faisal Mohammad Amin ◽  
Anders Hougaard ◽  
Stefano Magon ◽  
Till Sprenger ◽  
Frauke Wolfram ◽  
...  

Background Functional connectivity of brain networks may be altered in migraine without aura patients. Functional magnetic resonance imaging (fMRI) studies have demonstrated changed activity in the thalamus, pons and cerebellum in migraineurs. Here, we investigated the thalamic, pontine and cerebellar network connectivity during spontaneous migraine attacks. Methods Seventeen patients with episodic migraine without aura underwent resting-state fMRI scan during and outside of a spontaneous migraine attack. Primary endpoint was a difference in functional connectivity between the attack and the headache-free days. Functional connectivity was assessed in four different networks using seed-based analysis. The chosen seeds were in the thalamus (MNI coordinates x,y,z: right, 22,–24,0 and left, –22,–28,6), pons (right, 8,–24,–32 and left, –8,–24,–32), cerebellum crus I (right, 46,–58,–30 and left, –46,–58,–30) and cerebellum lobule VI (right, 34,–42,–36 and left, –32,–42,–36). Results We found increased functional connectivity between the right thalamus and several contralateral brain regions (superior parietal lobule, insular cortex, primary motor cortex, supplementary motor area and orbitofrontal cortex). There was decreased functional connectivity between the right thalamus and three ipsilateral brain areas (primary somatosensory cortex and premotor cortex). We found no change in functional connectivity in the pontine or the cerebellar networks. Conclusions The study indicates that network connectivity between thalamus and pain modulating as well as pain encoding cortical areas are affected during spontaneous migraine attacks.


NeuroImage ◽  
2016 ◽  
Vol 124 ◽  
pp. 442-454 ◽  
Author(s):  
Jorge Jovicich ◽  
Ludovico Minati ◽  
Moira Marizzoni ◽  
Rocco Marchitelli ◽  
Roser Sala-Llonch ◽  
...  

2013 ◽  
Vol 53 (3) ◽  
pp. 192-198 ◽  
Author(s):  
J. Davies ◽  
P.E. Gander ◽  
M. Andrews ◽  
D.A. Hall

Sign in / Sign up

Export Citation Format

Share Document