scholarly journals Analysis of copy number variations at 15 schizophrenia-associated loci

2014 ◽  
Vol 204 (2) ◽  
pp. 108-114 ◽  
Author(s):  
Elliott Rees ◽  
James T. R. Walters ◽  
Lyudmila Georgieva ◽  
Anthony R. Isles ◽  
Kimberly D. Chambert ◽  
...  

BackgroundA number of copy number variants (CNVs) have been suggested as susceptibility factors for schizophrenia. For some of these the data remain equivocal, and the frequency in individuals with schizophrenia is uncertain.AimsTo determine the contribution of CNVs at 15 schizophrenia-associated loci (a) using a large new data-set of patients with schizophrenia (n= 6882) and controls (n= 6316), and (b) combining our results with those from previous studies.MethodWe used Illumina microarrays to analyse our data. Analyses were restricted to 520 766 probes common to all arrays used in the different data-sets.ResultsWe found higher rates in participants with schizophrenia than in controls for 13 of the 15 previously implicated CNVs. Six were nominally significantly associated (P<0.05) in this new data-set: deletions at 1q21.1,NRXN1, 15q11.2 and 22q11.2 and duplications at 16p11.2 and the Angelman/Prader–Willi Syndrome (AS/PWS) region. All eight AS/PWS duplications in patients were of maternal origin. When combined with published data, 11 of the 15 loci showed highly significant evidence for association with schizophrenia (P<4.1×10−4).ConclusionsWe strengthen the support for the majority of the previously implicated CNVs in schizophrenia. About 2.5% of patients with schizophrenia and 0.9% of controls carry a large, detectable CNV at one of these loci. Routine CNV screening may be clinically appropriate given the high rate of known deleterious mutations in the disorder and the comorbidity associated with these heritable mutations.

2011 ◽  
Vol 61 (2) ◽  
pp. 225-238 ◽  
Author(s):  
Wen Bo Liao ◽  
Zhi Ping Mi ◽  
Cai Quan Zhou ◽  
Ling Jin ◽  
Xian Han ◽  
...  

AbstractComparative studies of the relative testes size in animals show that promiscuous species have relatively larger testes than monogamous species. Sperm competition favours the evolution of larger ejaculates in many animals – they give bigger testes. In the view, we presented data on relative testis mass for 17 Chinese species including 3 polyandrous species. We analyzed relative testis mass within the Chinese data set and combining those data with published data sets on Japanese and African frogs. We found that polyandrous foam nesting species have relatively large testes, suggesting that sperm competition was an important factor affecting the evolution of relative testes size. For 4 polyandrous species testes mass is positively correlated with intensity (males/mating) but not with risk (frequency of polyandrous matings) of sperm competition.


2017 ◽  
Vol 3 (5) ◽  
pp. e192 ◽  
Author(s):  
Corina Anastasaki ◽  
Stephanie M. Morris ◽  
Feng Gao ◽  
David H. Gutmann

Objective:To ascertain the relationship between the germline NF1 gene mutation and glioma development in patients with neurofibromatosis type 1 (NF1).Methods:The relationship between the type and location of the germline NF1 mutation and the presence of a glioma was analyzed in 37 participants with NF1 from one institution (Washington University School of Medicine [WUSM]) with a clinical diagnosis of NF1. Odds ratios (ORs) were calculated using both unadjusted and weighted analyses of this data set in combination with 4 previously published data sets.Results:While no statistical significance was observed between the location and type of the NF1 mutation and glioma in the WUSM cohort, power calculations revealed that a sample size of 307 participants would be required to determine the predictive value of the position or type of the NF1 gene mutation. Combining our data set with 4 previously published data sets (n = 310), children with glioma were found to be more likely to harbor 5′-end gene mutations (OR = 2; p = 0.006). Moreover, while not clinically predictive due to insufficient sensitivity and specificity, this association with glioma was stronger for participants with 5′-end truncating (OR = 2.32; p = 0.005) or 5′-end nonsense (OR = 3.93; p = 0.005) mutations relative to those without glioma.Conclusions:Individuals with NF1 and glioma are more likely to harbor nonsense mutations in the 5′ end of the NF1 gene, suggesting that the NF1 mutation may be one predictive factor for glioma in this at-risk population.


2012 ◽  
Vol 18 (2) ◽  
pp. 60-62
Author(s):  
MC Gonsales ◽  
P Preto ◽  
MA Montenegro ◽  
MM Guerreiro ◽  
I Lopes-Cendes

OBJECTIVES: The purpose of this study was to advance the knowledge on the clinical use of SCN1A testing for severe epilepsies within the spectrum of generalized epilepsy with febrile seizures plus by performing genetic screening in patients with Dravet and Doose syndromes and establishing genotype-phenotype correlations. METHODS: Mutation screening in SCN1A was performed in 15 patients with Dravet syndrome and 13 with Doose syndrome. Eight prediction algorithms were used to analyze the impact of the mutations in putative protein function. Furthermore, all SCN1A mutations previously published were compiled and analyzed. In addition, Multiplex Ligation-Dependent Probe Amplification (MLPA) technique was used to detect possible copy number variations within SCN1A. RESULTS: Twelve mutations were identified in patients with Dravet syndrome, while patients with Doose syndrome showed no mutations. Our results show that the most common type of mutation found is missense, and that they are mostly located in the pore region and the N- and C-terminal of the protein. No copy number variants in SCN1A were identified in our cohort. CONCLUSIONS: SCN1A testing is clinically useful for patients with Dravet syndrome, but not for those with Doose syndrome, since both syndromes do not seem to share the same genetic basis. Our results indicate that indeed missense mutations can cause severe phenotypes depending on its location and the type of amino-acid substitution. Moreover, our strategy for predicting deleterious effect of mutations using multiple computation algorithms was efficient for most of the mutations identified.


2019 ◽  
Vol 18 ◽  
pp. 117693511989029
Author(s):  
James LT Dalgleish ◽  
Yonghong Wang ◽  
Jack Zhu ◽  
Paul S Meltzer

Motivation: DNA copy number (CN) data are a fast-growing source of information used in basic and translational cancer research. Most CN segmentation data are presented without regard to the relationship between chromosomal regions. We offer both a toolkit to help scientists without programming experience visually explore the CN interactome and a package that constructs CN interactomes from publicly available data sets. Results: The CNVScope visualization, based on a publicly available neuroblastoma CN data set, clearly displays a distinct CN interaction in the region of the MYCN, a canonical frequent amplicon target in this cancer. Exploration of the data rapidly identified cis and trans events, including a strong anticorrelation between 11q loss and17q gain with the region of 11q loss bounded by the cell cycle regulator CCND1. Availability: The shiny application is readily available for use at http://cnvscope.nci.nih.gov/ , and the package can be downloaded from CRAN ( https://cran.r-project.org/package=CNVScope ), where help pages and vignettes are located. A newer version is available on the GitHub site ( https://github.com/jamesdalg/CNVScope/ ), which features an animated tutorial. The CNVScope package can be locally installed using instructions on the GitHub site for Windows and Macintosh systems. This CN analysis package also runs on a linux high-performance computing cluster, with options for multinode and multiprocessor analysis of CN variant data. The shiny application can be started using a single command (which will automatically install the public data package).


2020 ◽  
Vol 295 (27) ◽  
pp. 8999-9011 ◽  
Author(s):  
Alina Glaub ◽  
Christopher Huptas ◽  
Klaus Neuhaus ◽  
Zachary Ardern

Ribosome profiling (RIBO-Seq) has improved our understanding of bacterial translation, including finding many unannotated genes. However, protocols for RIBO-Seq and corresponding data analysis are not yet standardized. Here, we analyzed 48 RIBO-Seq samples from nine studies of Escherichia coli K12 grown in lysogeny broth medium and particularly focused on the size-selection step. We show that for conventional expression analysis, a size range between 22 and 30 nucleotides is sufficient to obtain protein-coding fragments, which has the advantage of removing many unwanted rRNA and tRNA reads. More specific analyses may require longer reads and a corresponding improvement in rRNA/tRNA depletion. There is no consensus about the appropriate sequencing depth for RIBO-Seq experiments in prokaryotes, and studies vary significantly in total read number. Our analysis suggests that 20 million reads that are not mapping to rRNA/tRNA are required for global detection of translated annotated genes. We also highlight the influence of drug-induced ribosome stalling, which causes bias at translation start sites. The resulting accumulation of reads at the start site may be especially useful for detecting weakly expressed genes. As different methods suit different questions, it may not be possible to produce a “one-size-fits-all” ribosome profiling data set. Therefore, experiments should be carefully designed in light of the scientific questions of interest. We propose some basic characteristics that should be reported with any new RIBO-Seq data sets. Careful attention to the factors discussed should improve prokaryotic gene detection and the comparability of ribosome profiling data sets.


2013 ◽  
Vol 19 (5) ◽  
pp. 568-572 ◽  
Author(s):  
K Ahn ◽  
N Gotay ◽  
T M Andersen ◽  
A A Anvari ◽  
P Gochman ◽  
...  

2016 ◽  
Author(s):  
Emanuel Gonçalves ◽  
Athanassios Fragoulis ◽  
Luz Garcia-Alonso ◽  
Thorsten Cramer ◽  
Julio Saez-Rodriguez ◽  
...  

AbstractChromosomal rearrangements, despite being detrimental, are ubiquitous in cancer and often act as driver events. The effect of copy number variations (CNVs) on the cellular proteome of tumours is poorly understood. Therefore, we have analysed recently generated proteogenomic data-sets on 282 tumour samples to investigate the impact of CNVs in the proteome of these cells. We found that CNVs are post-transcriptionally attenuated in 23-33% of proteins with an enrichment for protein complexes. Complex subunits are highly co-regulated and some act as rate-limiting steps of complex assembly, indirectly controlling the abundance of other complex members. We identified 48 such regulatory interactions and experimentally validated AP3B1 and GTF2E2 as controlling subunits. Lastly, we found that a gene-signature of protein attenuation is associated with increased resistance to chaperone and proteasome inhibitors. This study highlights the importance of post-transcriptional mechanisms in cancer which allow cells to cope with their altered genomes.


2018 ◽  
Author(s):  
Whitney Whitford ◽  
Klaus Lehnert ◽  
Russell G. Snell ◽  
Jessie C. Jacobsen

AbstractBackgroundThe popularisation and decreased cost of genome resequencing has resulted in an increased use in molecular diagnostics. While there are a number of established and high quality bioinfomatic tools for identifying small genetic variants including single nucleotide variants and indels, currently there is no established standard for the detection of copy number variants (CNVs) from sequence data. The requirement for CNV detection from high throughput sequencing has resulted in the development of a large number of software packages. These tools typically utilise the sequence data characteristics: read depth, split reads, read pairs, and assembly-based techniques. However the additional source of information from read balance, defined as relative proportion of reads of each allele at each position, has been underutilised in the existing applications.ResultsWe present Read Balance Validator (RBV), a bioinformatic tool which uses read balance for prioritisation and validation of putative CNVs. The software simultaneously interrogates nominated regions for the presence of deletions or multiplications, and can differentiate larger CNVs from diploid regions. Additionally, the utility of RBV to test for inheritance of CNVs is demonstrated in this report.ConclusionsRBV is a CNV validation and prioritisation bioinformatic tool for both genome and exome sequencing available as a python package from https://github.com/whitneywhitford/RBV


2019 ◽  
Vol 20 (4) ◽  
pp. 893 ◽  
Author(s):  
Federica Cariati ◽  
Francesca Borrillo ◽  
Varun Shankar ◽  
Marcella Nunziato ◽  
Valeria D’Argenio ◽  
...  

Tumors often show intra-tumor heterogeneity because of genotypic differences between all the cells that compose it and that derive from it. Recent studies have shown significant aspects of neuroblastoma heterogeneity that may affect the diagnostic-therapeutic strategy. Therefore, we developed a laboratory protocol, based on the combination of the advanced dielectrophoresis-based array technology and next-generation sequencing to identify and sort single cells individually and carry out their copy number variants analysis. The aim was to evaluate the cellular heterogeneity, avoiding overestimation or underestimation errors, due to a bulk analysis of the sample. We tested the above-mentioned protocol on two neuroblastoma cell lines, SK-N-BE(2)-C and IMR-32. The presence of several gain or loss chromosomal regions, in both cell lines, shows a high heterogeneity of the copy number variants status of the single tumor cells, even if they belong to an immortalized cell line. This finding confirms that each cell can potentially accumulate different alterations that can modulate its behavior. The laboratory protocol proposed herein provides a tool able to identify prevalent behaviors, and at the same time highlights the presence of particular clusters that deviate from them. Finally, it could be applicable to many other types of cancer.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
L. D’Abate ◽  
S. Walker ◽  
R. K. C. Yuen ◽  
K. Tammimies ◽  
J. A. Buchanan ◽  
...  

AbstractIdentification of genetic biomarkers associated with autism spectrum disorders (ASDs) could improve recurrence prediction for families with a child with ASD. Here, we describe clinical microarray findings for 253 longitudinally phenotyped ASD families from the Baby Siblings Research Consortium (BSRC), encompassing 288 infant siblings. By age 3, 103 siblings (35.8%) were diagnosed with ASD and 54 (18.8%) were developing atypically. Thirteen siblings have copy number variants (CNVs) involving ASD-relevant genes: 6 with ASD, 5 atypically developing, and 2 typically developing. Within these families, an ASD-related CNV in a sibling has a positive predictive value (PPV) for ASD or atypical development of 0.83; the Simons Simplex Collection of ASD families shows similar PPVs. Polygenic risk analyses suggest that common genetic variants may also contribute to ASD. CNV findings would have been pre-symptomatically predictive of ASD or atypical development in 11 (7%) of the 157 BSRC siblings who were eventually diagnosed clinically.


Sign in / Sign up

Export Citation Format

Share Document