Forced Vibration Testing and Finite Element Modeling of a Nine-Story Reinforced Concrete Flat Plate-Wall Building

2015 ◽  
Vol 31 (2) ◽  
pp. 1069-1081 ◽  
Author(s):  
Ozan Cem Celik ◽  
Haluk Sucuoğlu ◽  
Ugurhan Akyuz

Tunnel form buildings, owing to their higher construction speed and quality, lower cost, and superior earthquake resistance over that of conventional reinforced concrete buildings, have been widely used for mass housing, urban renewal, and post-earthquake reconstruction projects all over the world as well as in Turkey. However, there have been few dynamic tests performed on existing buildings with this structural system. This study investigates the dynamic structural properties of a typical nine-story reinforced concrete flat plate-wall building by forced vibration testing and develops its three-dimensional (3-D) linear elastic finite element structural model. The finite element model that uses the modulus of elasticity for concrete in ACI 318 predicts the natural vibration periods well. Mode shapes are also in good agreement with the test results. Door and window openings in the shear walls, and the basement with peripheral wall emerge as modeling considerations that have the most significant impact on structural system dynamic properties.

Author(s):  
F.E. Udwadia

This paper investigates the problem of uniqueness in the identification of building structural systems from data gathered during forced-vibration testing. Modelling the structure as an undamped discrete shear beam, it is shown that if the top floor response to a known forcing function which is also applied at the same location is available, then unique identification of the structural system is possible. Several useful results on the ability to uniquely identify some, but not all, of the stiffness constants of the system have also been obtained.


2019 ◽  
Vol 20 (1-2) ◽  
pp. 142-146
Author(s):  
Jarosław Bednarz

Nowadays, one of the basic criteria of the design of mechanical structures are dynamic properties of the object. They have a significant effect on the vibration, emitted noise, fatigue strength, controllability and stability of the structure. The structural models are most often use to describe the dynamics of the structures. These models are built in accordance with the principles of the finite element method . Structural model can be used to determine the modal model which is a collection of natural frequencies and corresponding mode shapes by an appropriate coordinate transformation model. The construction pro-cess is called the modal analysis . The article presented a method of conducting the experimental modal studies of railway car. The aim of the study was to identify the dynamic properties including the frequency and mode shapes of the object..


2020 ◽  
pp. 107754632095792
Author(s):  
Ozan Cem Celik ◽  
Hakkı Polat Gülkan

This article presents the use of the analytic signal procedure for processing the large volume of structural vibration data recorded in forced vibration tests. The analytic signal facilitates the computationally laborious task of extracting the steady-state amplitude for each response measure of interest from the recorded accelerations throughout the building at each operated frequency of the forced vibration source. The implementation of the signal processing procedure introduced here is illustrated in deriving the acceleration–frequency response curves from the forced vibration test of the first permanently instrumented building in Turkey. This reinforced concrete building, subsequently strengthened with cast-in-place reinforced concrete infill shear walls, is located in close proximity to the North Anatolian Fault. Later, system identification of the building yields the in situ structural system dynamic properties for the first translational and torsional vibration modes, which are compared with those identified from the ambient vibrations of the building recorded following its forced vibration test. The analytic signal procedure is a convenient tool for the rapid and correct derivation for mode shapes and associated frequencies and damping ratios from forced vibration testing of structural systems.


2018 ◽  
Vol 7 (3.2) ◽  
pp. 291
Author(s):  
Andrii Pavlikov ◽  
Serhii Mykytenko ◽  
Anton Hasenko

This article falls within vital question in quickly builds construction – theoretical method for calculating the slabs and columns of such buildings. Calculation research of buildings with reinforced concrete frame slabs is described in the article. The features of work the collapsible flat plate ceiling in composition of reinforced concrete framework of building are analyzed. Problems in the design of framework building are considered in order to increase its reliability. The suggestions for directions of perfection the calculation of flat plate frame construction elements are proposed in the article. The novelty of this work is to get new theoretical data about bearing capacity and deformability of structural system for the affordable housing construction from reinforced concrete.  


Sign in / Sign up

Export Citation Format

Share Document