Summary of the Abrahamson & Silva NGA Ground-Motion Relations

2008 ◽  
Vol 24 (1) ◽  
pp. 67-97 ◽  
Author(s):  
Norman Abrahamson ◽  
Walter Silva

Empirical ground-motion models for the rotation-independent average horizontal component from shallow crustal earthquakes are derived using the PEER NGA database. The model is applicable to magnitudes 5–8.5, distances 0–200 km, and spectral periods of 0–10 sec. In place of generic site categories (soil and rock), the site is parameterized by average shear-wave velocity in the top 30 m ( VS30) and the depth to engineering rock (depth to VS=1000 m/s). In addition to magnitude and style-of-faulting, the source term is also dependent on the depth to top-of-rupture: for the same magnitude and rupture distance, buried ruptures lead to larger short-period ground motions than surface ruptures. The hanging-wall effect is included with an improved model that varies smoothly as a function of the source properties (M, dip, depth), and the site location. The standard deviation is magnitude dependent with smaller magnitudes leading to larger standard deviations. The short-period standard deviation model for soil sites is also distant-dependent due to nonlinear site response, with smaller standard deviations at short distances.

2008 ◽  
Vol 24 (1) ◽  
pp. 45-66 ◽  
Author(s):  
Norman Abrahamson ◽  
Gail Atkinson ◽  
David Boore ◽  
Yousef Bozorgnia ◽  
Kenneth Campbell ◽  
...  

The data sets, model parameterizations, and results from the five NGA models for shallow crustal earthquakes in active tectonic regions are compared. A key difference in the data sets is the inclusion or exclusion of aftershocks. A comparison of the median spectral values for strike-slip earthquakes shows that they are within a factor of 1.5 for magnitudes between 6.0 and 7.0 for distances less than 100 km. The differences increase to a factor of 2 for M5 and M8 earthquakes, for buried ruptures, and for distances greater than 100 km. For soil sites, the differences in the modeling of soil/sediment depth effects increase the range in the median long-period spectral values for M7 strike-slip earthquakes to a factor of 3. The five models have similar standard deviations for M6.5-M7.5 earthquakes for rock sites and for soil sites at distances greater than 50 km. Differences in the standard deviations of up to 0.2 natural log units for moderate magnitudes at all distances and for large magnitudes at short distances result from the treatment of the magnitude dependence and the effects of nonlinear site response on the standard deviation.


2017 ◽  
Vol 33 (2) ◽  
pp. 499-528 ◽  
Author(s):  
Zeynep Gülerce ◽  
Ronnie Kamai ◽  
Norman A. Abrahamson ◽  
Walter J. Silva

Empirical ground motion models for the vertical component from shallow crustal earthquakes in active tectonic regions are derived using the PEER NGA-West2 database. The model is applicable to magnitudes 3.0–8.0, distances of 0–300 km, and spectral periods of 0–10 s. The model input parameters are the same as used by Abrahamson et al. (2014) except that the nonlinear site response and depth to bedrock effects are evaluated but found to be insignificant. Regional differences in large distance attenuation and site amplification scaling between California, Japan, China, Taiwan, Italy, and the Middle East are included. Scaling for the hanging-wall effect is incorporated using the constraints from numerical simulations by Donahue and Abrahamson (2014) . The standard deviation is magnitude dependent with smaller magnitudes leading to larger standard deviations at short periods but smaller standard deviations at long periods. The vertical ground motion model developed in this study can be paired with the horizontal component model proposed by Abrahamson et al. (2014) to produce a V/H ratio. For applications where the horizontal spectrum is derived from the weighted average of several horizontal ground motion models, a V/H model derived directly from the V/H data (such as Gülerce and Abrahamson 2011 ) should be preferred.


2014 ◽  
Vol 30 (3) ◽  
pp. 1025-1055 ◽  
Author(s):  
Norman A. Abrahamson ◽  
Walter J. Silva ◽  
Ronnie Kamai

Empirical ground motion models for the average horizontal component from shallow crustal earthquakes in active tectonic regions are derived using the PEER NGA-West2 database. The model is applicable to magnitudes 3.0–8.5, distances 0–300 km, and spectral periods of 0–10 s. The model input parameters are the same as those used by Abrahamson and Silva (2008) , with the following exceptions: the loading level for nonlinear effects is based on the spectral acceleration at the period of interest rather than the PGA; and the distance scaling for hanging wall (HW) effects off the ends of the rupture includes a dependence on the source-to-site azimuth. Regional differences in large-distance attenuation and V S30 scaling between California, Japan, China, and Taiwan are included. The scaling for the HW effect is improved using constraints from numerical simulations. The standard deviation is magnitude-dependent, with smaller magnitudes leading to larger standard deviations at short periods, but smaller standard deviations at long periods. Directivity effects are not included through explicit parameters, but are captured through the variability of the empirical data.


2008 ◽  
Vol 24 (1) ◽  
pp. 173-215 ◽  
Author(s):  
BrianS-J. Chiou ◽  
Robert R. Youngs

We present a model for estimating horizontal ground motion amplitudes caused by shallow crustal earthquakes occurring in active tectonic environments. The model provides predictive relationships for the orientation-independent average horizontal component of ground motions. Relationships are provided for peak acceleration, peak velocity, and 5-percent damped pseudo-spectral acceleration for spectral periods of 0.01 to 10 seconds. The model represents an update of the relationships developed by Sadigh et. al. (1997) and incorporates improved magnitude and distance scaling forms as well as hanging-wall effects. Site effects are represented by smooth functions of average shear wave velocity of the upper 30 m ( VS30) and sediment depth. The new model predicts median ground motion that is similar to Sadigh et. al. (1997) at short spectral period, but lower ground motions at longer periods. The new model produces slightly lower ground motions in the distance range of 10 to 50 km and larger ground motions at larger distances. The aleatory variability in ground motion amplitude was found to depend upon earthquake magnitude and on the degree of nonlinear soil response, For large magnitude earthquakes, the aleatory variability is larger than found by Sadigh et. al. (1997).


2016 ◽  
Vol 32 (2) ◽  
pp. 1005-1031 ◽  
Author(s):  
Jonathan P. Stewart ◽  
David M. Boore ◽  
Emel Seyhan ◽  
Gail M. Atkinson

We present ground motion prediction equations (GMPEs) for computing natural log means and standard deviations of vertical-component intensity measures (IMs) for shallow crustal earthquakes in active tectonic regions. The equations were derived from a global database with M 3.0–7.9 events. The functions are similar to those for our horizontal GMPEs. We derive equations for the primary M- and distance-dependence of peak acceleration, peak velocity, and 5%-damped pseudo-spectral accelerations at oscillator periods between 0.01–10 s. We observe pronounced M-dependent geometric spreading and region-dependent anelastic attenuation for high-frequency IMs. We do not observe significant region-dependence in site amplification. Aleatory uncertainty is found to decrease with increasing magnitude; within-event variability is independent of distance. Compared to our horizontal-component GMPEs, attenuation rates are broadly comparable (somewhat slower geometric spreading, faster apparent anelastic attenuation), VS30-scaling is reduced, nonlinear site response is much weaker, within-event variability is comparable, and between-event variability is greater.


2014 ◽  
Vol 30 (3) ◽  
pp. 1117-1153 ◽  
Author(s):  
Brian S.-J. Chiou ◽  
Robert R. Youngs

We present an update to our 2008 NGA model for predicting horizontal ground motion amplitudes caused by shallow crustal earthquakes occurring in active tectonic environments. The update is based on analysis of the greatly expanded NGA-West2 ground motion database and numerical simulations. The updated model contains minor adjustments to our 2008 functional form related to style of faulting effects, hanging wall effects, scaling with the depth to top of rupture, scaling with sediment thickness, and the inclusion of additional terms for the effects of fault dip and rupture directivity. In addition, we incorporate regional differences in far-source distance attenuation and site effects between California and other active tectonic regions. Compared to our 2008 NGA model, the predicted medians by the updated model are similar for M > 7 and are lower for M < 5. The aleatory variability is larger than that obtained in our 2008 model.


Author(s):  
David M. Boore ◽  
Jonathan P. Stewart ◽  
Andreas A. Skarlatoudis ◽  
Emel Seyhan ◽  
Basil Margaris ◽  
...  

ABSTRACT Using a recently completed database of uniformly processed strong-motion data recorded in Greece, we derive a ground-motion prediction model (GMPM) for horizontal-component peak ground velocity, peak ground acceleration, and 5% damped pseudoacceleration response spectra, at 105 periods ranging from 0.01 to 10 s. The equations were developed by modifying a global GMPM, to account for more rapid attenuation and weaker magnitude scaling in the Greek ground motions than in the global GMPM. Our GMPM is calibrated using the Greek data for distances up to 300 km, magnitudes from 4.0 to 7.0, and time-averaged 30 m shear-wave velocities from 150 to 1200  m/s. The GMPM has important attributes for hazard applications including magnitude scaling that extends the range of applicability to M 8.0 and nonlinear site response. These features are possible because they are well constrained by data in the global GMPM from which our model is derived. An interesting feature of the Greek data, also observed previously in studies of mid-magnitude events (6.1–6.5) in Italy, is that they are substantially overpredicted by the global GMPM, which may be a repeatable regional feature, but may also be influenced by soil–structure interaction. This bias is an important source of epistemic uncertainty that should be considered in hazard analysis.


2012 ◽  
Vol 28 (1) ◽  
pp. 17-35 ◽  
Author(s):  
Brendon A. Bradley

Empirical correlation equations between peak ground velocity ( PGV) and several spectrum-based ground motion intensity measures are developed. The intensity measures examined in particular were: peak ground acceleration ( PGA), 5% damped pseudo-spectral acceleration ( SA), acceleration spectrum intensity ( ASI), and spectrum intensity ( SI). The computed correlations were obtained using ground motions from active shallow crustal earthquakes and four ground motion prediction equations. Results indicate that PGV is strongly correlated (i.e., a correlation coefficient of [Formula: see text]) with SI, moderately correlated with medium to long-period SA (i.e., [Formula: see text] for vibration periods 0.5-3.0 seconds), and also moderately correlated with short period SA, PGA and ASI ([Formula: see text]). A simple example is used to illustrate one possible application of the developed correlation equations for ground motion selection.


Sign in / Sign up

Export Citation Format

Share Document