Seismic Fragility Assessment of Concrete Bridge Pier Reinforced with Superelastic Shape Memory Alloy

2015 ◽  
Vol 31 (3) ◽  
pp. 1515-1541 ◽  
Author(s):  
A. H. M. Muntasir Billah ◽  
M. Shahria Alam

In an attempt to reduce permanent displacement and damage, a hybrid reinforced concrete (RC) bridge pier configuration is considered in the present study. The plastic hinge region of the bridge pier is reinforced with superelastic shape memory alloy (SMA) and the remaining portion with regular steel. This paper focuses on fragility-based seismic vulnerability assessment for a SMA-RC bridge pier considering residual displacement, displacement ductility, and performance criteria as the demand parameters. Fragility curves are developed to assess the relative vulnerability of a SMA-RC bridge pier and a conventional steel-RC bridge pier using probabilistic seismic demand model (PSDM). The fragility curves are developed with a suite of 20 near-fault ground motions using incremental dynamic analysis. The fragility curves provide insight into the failure probability of the bridge piers and aid in expressing the impact of SMA on the bridge pier vulnerability.

2019 ◽  
Vol 258 ◽  
pp. 04001 ◽  
Author(s):  
Nursafarina Ahmad ◽  
Azmi Ibrahim ◽  
Shahria Alam

Fragility curves express the seismic vulnerability of bridge piers for different damage states at various earthquake intensities. A fragility curve typically gives a physical understanding of repair costs and functionally levels of a bridge pier. Shape memory alloys (SMAs) provide a promising alternative material in reducing the failure probability of a bridge pier. This study develops a family of seismic fragility curves for reinforced concrete (RC) wall piers reinforced with three different types of SMA rebar in plastic hinge regions. An incremental dynamic analysis (IDA) using a total of 20 earthquake ground motions was performed on a SMA-RC wall pier to evaluate its seismic performance. The maximum drift recorded for each ground motion was taken as the seismic performance demand parameter of interest in this study. The probabilistic seismic demand model (PSDM) was used to generate fragility curves for each RC-SMA wall pier. The results show that the different mechanical properties and type of SMAs affect the performance of RC-SMA wall pier.


2021 ◽  
Vol 16 (2-3) ◽  
pp. 85-103
Author(s):  
Rajesh R. Rele ◽  
Ranjan Balmukund ◽  
Stergios A. Mitoulis ◽  
Subhamoy Bhattacharya

The conventional design philosophy of bridges allows damage in the pier through yielding. A fuse-like action is achieved if the bridge piers are designed to develop substantial inelastic deformations when subjected to earthquake excitations. Such a design can avoid collapse of the bridge but not damage. The damage is the plastic hinge formation formed at location of maximum moments and stresses that can lead to permanent lateral displacement which can impair traffic flow and cause time consuming repairs. Rocking can act as a form of isolation by means of foundation uplifting which act as a mechanical fuse, limiting the forces transferred to the base of the structure. In this context, this paper proposes a novel resilient controlled rocking bridge pier foundation, which uses elastomeric pads incorporated beneath the footing of the bridge piers and external restrainer in the form of shape memory alloy bar (SMA). The rocking mechanism is achieved by restricting the horizontal movement of footing by providing stoppers at all sides of footing. The pads are designed to remain elastic without allowing their shearing. The pier, the footing and the elastomeric pads are assumed to be supported on firm rigid concrete sub base resting on hard rock. By performing nonlinear dynamic time history analysis in the traffic direction of the bridge, the proposed pier with the novel resilient foundation is compared against a fixed-based pier and classical rocking pier (CC). The proposed pier rocking on elastomeric pads and external restrainer (CP+SMA) has good re-centering capability during earthquakes with negligible residual drift and footing uplift. In this new rocking isolation technique, the forces in the piers are also reduced and thus leading to reduced construction cost with enhanced post-earthquake serviceability.


2013 ◽  
Vol 135 (11) ◽  
Author(s):  
Edwin Peraza-Hernandez ◽  
Darren Hartl ◽  
Edgar Galvan ◽  
Richard Malak

Origami engineering—the practice of creating useful three-dimensional structures through folding and fold-like operations on two-dimensional building-blocks—has the potential to impact several areas of design and manufacturing. In this article, we study a new concept for a self-folding system. It consists of an active, self-morphing laminate that includes two meshes of thermally-actuated shape memory alloy (SMA) wire separated by a compliant passive layer. The goal of this article is to analyze the folding behavior and examine key engineering tradeoffs associated with the proposed system. We consider the impact of several design variables including mesh wire thickness, mesh wire spacing, thickness of the insulating elastomer layer, and heating power. Response parameters of interest include effective folding angle, maximum von Mises stress in the SMA, maximum temperature in the SMA, maximum temperature in the elastomer, and radius of curvature at the fold line. We identify an optimized physical realization for maximizing folding capability under mechanical and thermal failure constraints. Furthermore, we conclude that the proposed self-folding system is capable of achieving folds of significant magnitude (as measured by the effective folding angle) as required to create useful 3D structures.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1701 ◽  
Author(s):  
Ammar Abbass ◽  
Reza Attarnejad ◽  
Mehdi Ghassemieh

From past earthquakes, it has been found that the large residual displacement of bridges after seismic events could be one of the major causes of instability and serviceability disruption of the bridge. The shape memory alloy bars have the ability to reduce permanent deformations of concrete structures. This paper represents a new approach for retrofitting and seismic rehabilitation of previously designed bridge columns. In this concept, the RC bridge column was divided into three zones. The first zone in the critical region of the column where the plastic hinge is possible to occur was retrofitted with near-surface mounted shape memory alloy technique and wrapped with FRP sheets. The second zone, being above the plastic hinge, was confined with Fiber-Reinforced Polymer (FRP) jacket only, and the rest of the column left without any retrofitting. For this purpose, five types of shape memory alloy bars were used. One rectangular and one circular RC bridge column was selected and retrofitted with this proposed technique. The retrofitted columns were numerically investigated under nonlinear static and lateral cyclic loading using 2D fiber element modeling in OpenSees software. The results were normalized and compared with the as-built column. The results indicated that the relative self-centering capacity of RC bridge piers retrofitted with this new approach was highly greater than that of the as-built column. In addition, enhancements in strength and ductility were observed.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Carmen De Crescenzo ◽  
Despina Karatza ◽  
Dino Musmarra ◽  
Simeone Chianese ◽  
Theocharis Baxevanis ◽  
...  

This work aims at contributing to the development of a revolutionary technology based on shape memory alloy (SMA) coatings deposited on-site to large-scale metallic structural elements, which operate in extreme environmental conditions, such as steel bridges and buildings. The proposed technology will contribute to improve the integrity of metallic civil structures, to alter and control their mechanical properties by external stimuli, to contribute to the stiffness and rigidity of an elastic metallic structure, to safely withstand the expected loading conditions, and to provide corrosion protection. To prove the feasibility of the concept, investigations were carried out by depositing commercial NiTinol Ni50.8Ti (at.%) powder, onto stainless steel substrates by using high-velocity oxygen-fuel thermal spray technology. While the NiTinol has been known since decades, this intermetallic alloy, as well as no other alloy, was ever used as the SMA-coating material. Due to the influence of dynamics of spraying and the impact energy of the powder particles on the properties of thermally sprayed coatings, the effects of the main spray parameters, namely, spray distance, fuel-to-oxygen feed rate ratio, and coating thickness, on the quality and properties of the coating, in terms of hardness, adhesion, roughness, and microstructure, were investigated.


2011 ◽  
Vol 65 (5) ◽  
pp. 863-865 ◽  
Author(s):  
J. Aurrekoetxea ◽  
J. Zurbitu ◽  
I. Ortiz de Mendibil ◽  
A. Agirregomezkorta ◽  
M. Sánchez-Soto ◽  
...  

2018 ◽  
Vol 29 (18) ◽  
pp. 3598-3613 ◽  
Author(s):  
Baikuntha Silwal ◽  
Qindan Huang ◽  
Osman E Ozbulut ◽  
Mojtaba Dyanati

Superelastic viscous damper is a passive hybrid control device that combines shape memory alloy cables and a viscoelastic damper to mitigate dynamic response of structures subjected to multi-level seismic hazards. In the hybrid device, shape memory alloy cables that exhibit a nonlinear but elastic response are used mainly as re-centering unit, while the viscoelastic damper composed of high-damped butyl rubber compounds is employed to augment the equivalent viscous damping provided by the device. This study evaluates the effectiveness of superelastic viscous dampers in mitigating seismic response of steel frame structures through a probabilistic framework. First, a nine-story steel frame building is designed and modeled with and without superelastic viscous dampers, and extensive nonlinear response-history analyses are conducted. Then, probabilistic demand models are developed for selected engineering demand parameters. To quantitatively compare the performance of the designed buildings, seismic fragility curves and mean annual frequency of exceeding different performance levels are developed. In particular, the structural performance is evaluated using both peak inter-story drift and residual drift responses. Results indicate that superelastic viscous dampers can significantly improve structural performance; thus, it has the potential to lower the post-earthquake losses, as the better structural performance leads to less loss in relocation, rental, and economic loss.


Sign in / Sign up

Export Citation Format

Share Document