scholarly journals CGI-58/ABHD5 is phosphorylated on Ser239 by protein kinase A: control of subcellular localization

2014 ◽  
Vol 56 (1) ◽  
pp. 109-121 ◽  
Author(s):  
Anita Sahu-Osen ◽  
Gabriela Montero-Moran ◽  
Matthias Schittmayer ◽  
Katarina Fritz ◽  
Anna Dinh ◽  
...  
2010 ◽  
Vol 285 (23) ◽  
pp. 18039-18050 ◽  
Author(s):  
Ji Suk Chang ◽  
Peter Huypens ◽  
Yubin Zhang ◽  
Chelsea Black ◽  
Anastasia Kralli ◽  
...  

2016 ◽  
Author(s):  
Ronit Ilouz ◽  
Varda Lev-Ram ◽  
Eric A Bushong ◽  
Travis L Stiles ◽  
Dinorah Friedmann-Morvinski ◽  
...  

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Ronit Ilouz ◽  
Varda Lev-Ram ◽  
Eric A Bushong ◽  
Travis L Stiles ◽  
Dinorah Friedmann-Morvinski ◽  
...  

Protein kinase A (PKA) plays critical roles in neuronal function that are mediated by different regulatory (R) subunits. Deficiency in either the RIβ or the RIIβ subunit results in distinct neuronal phenotypes. Although RIβ contributes to synaptic plasticity, it is the least studied isoform. Using isoform-specific antibodies, we generated high-resolution large-scale immunohistochemical mosaic images of mouse brain that provided global views of several brain regions, including the hippocampus and cerebellum. The isoforms concentrate in discrete brain regions, and we were able to zoom-in to show distinct patterns of subcellular localization. RIβ is enriched in dendrites and co-localizes with MAP2, whereas RIIβ is concentrated in axons. Using correlated light and electron microscopy, we confirmed the mitochondrial and nuclear localization of RIβ in cultured neurons. To show the functional significance of nuclear localization, we demonstrated that downregulation of RIβ, but not of RIIβ, decreased CREB phosphorylation. Our study reveals how PKA isoform specificity is defined by precise localization.


Reproduction ◽  
2000 ◽  
pp. 377-383 ◽  
Author(s):  
L Leonardsen ◽  
A Wiersma ◽  
M Baltsen ◽  
AG Byskov ◽  
CY Andersen

The mitogen-activated protein kinase-dependent and the cAMP-protein kinase A-dependent signal transduction pathways were studied in cultured mouse oocytes during induced and spontaneous meiotic maturation. The role of the mitogen-activated protein kinase pathway was assessed using PD98059, which specifically inhibits mitogen-activated protein kinase 1 and 2 (that is, MEK1 and MEK2), which activates mitogen-activated protein kinase. The cAMP-dependent protein kinase was studied by treating oocytes with the protein kinase A inhibitor rp-cAMP. Inhibition of the mitogen-activated protein kinase pathway by PD98059 (25 micromol l(-1)) selectively inhibited the stimulatory effect on meiotic maturation by FSH and meiosis-activating sterol (that is, 4,4-dimethyl-5alpha-cholest-8,14, 24-triene-3beta-ol) in the presence of 4 mmol hypoxanthine l(-1), whereas spontaneous maturation in the absence of hypoxanthine was unaffected. This finding indicates that different signal transduction mechanisms are involved in induced and spontaneous maturation. The protein kinase A inhibitor rp-cAMP induced meiotic maturation in the presence of 4 mmol hypoxanthine l(-1), an effect that was additive to the maturation-promoting effect of FSH and meiosis-activating sterol, indicating that induced maturation also uses the cAMP-protein kinase A-dependent signal transduction pathway. In conclusion, induced and spontaneous maturation of mouse oocytes appear to use different signal transduction pathways.


Sign in / Sign up

Export Citation Format

Share Document