Oncolytic adenovirus expressing apoptotic genes targets radiation resistant (RR) esophageal cancer

2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 21043-21043
Author(s):  
J. Y. Chang ◽  
R. Komaki ◽  
X. Zhang ◽  
L. Wang ◽  
B. Fang

21043 Background: Only 25% of esophageal cancer patients achieve pathological complete response after standard chemoradiotherapy. Radiation dose escalation is associated with higher toxicity but no therapeutic improvement. In addition, esophageal cancer cells may develop radiation resistance (RR) after fractionated radiation exposure. Therefore, molecular targeting therapy for RR esophageal cancer is urgently needed. Methods: Six pairs of RR esophageal cancer cell lines were established by applying continuous 2 Gy fractionated irradiation. Ad/TRAIL-E1, an oncolytic adenoviral vector expressing both apoptotic TRAIL and viral E1A genes under the control of tumor specific human telomerase reverse transcriptase promoter, was constructed. Phosphate buffer solution and vectors expressing the TRAIL gene only, the GFP marker protein only, or the E1A gene only served as controls. Trans-gene expression, apoptosis activation, and the RR esophageal cancer cells targeted were evaluated in vitro and in vivo. A human esophageal RR cancer model was established and locally treated with Ad/TRAIL-E1 or controls. Results: After fractionated radiation exposure, esophageal cancer cell lines developed RR (up to 25-fold) that was associated with activation of the anti-apoptotic pathway. Ad/TRAIL-E1 activated an apoptotic cascade of caspases and selectively killed esophageal cancer cells but not normal cells. Ad/TRAIL-E1 preferentially targeted RR stem-like cancer cells with higher trans-gene expression and cell killing compared with parental cells. Overexpression (3 times) of Coxsackie's and adenoviral receptors in RR esophageal cancer cells compared with parental cells was noted. Ad/TRAIL-E1 therapy resulted in 40% tumor-free survival without the treatment- related toxicity found in human RR esophageal adenocarcinoma mouse models (p<0.05 as compared with controls). Conclusions: Esophageal cancer cells develop RR after fractionated radiation exposure. Ad/TRAIL-E1 preferentially targeted RR stem-like esophageal cancer cells, which resulted in a 40% cure rate. No significant financial relationships to disclose.

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Hui Luo ◽  
Xiaohui Wang ◽  
Yunhan Wang ◽  
Qinfu Dan ◽  
Hong Ge

Abstract Background To investigate the effect of mannose on radio-sensitivity of human esophageal squamous cell carcinoma (ESCC) cell line and its possible mechanism. Methods The expression of mannose phosphate isomerase (MPI) in human esophageal cancer cell lines were detected by Western blot. The inhibitory effect of mannose on human esophageal cancer cell lines were observed by MTT assay. Plate clone formation assay was performed to investigate the efficacy of mannose on radio-sensitivity of human esophageal cancer cells. The apoptosis rates of tumor cells treated with mannose and/or radiation therapy was calculated by flow cytometry. Furthermore, we analyzed intracellular metabolites using liquid chromatography mass spectrometry to identify selective sugar metabolites. Results MPI expression was various in human esophageal cancer cells. KYSE70 cells was associated with the highest MPI expression whereas KYSE450 cells had the lowest MPI expression level. When administrated with 11.1 mM/L mannose, the same inhibitory effect was observed in both KYSE70 and KYSE450 cell lines. Moreover, the inhibitory effect was significant on KYSE450 cell lines with an increased mannose concentration. The application of 11.1 mM/L mannose could significantly enhance the radio-sensitivity of KYSE450 cell line; and tumor cell apoptosis rate was also increased. However, there was limited efficacy of mannose on the radio-sensitivity and apoptosis rate of KYSE70 cell line. Additionally, intracellular metabolites analyzation revealed that glycolysis could be disturbed by mannose when combined with radiation therapy in esophageal cancer cells. Conclusion In esophageal cancer cell lines with low MPI expression, the administration of mannose was associated with enhanced radio-sensitivity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Md Sazzad Hassan ◽  
Nicholas Cwidak ◽  
Chloe Johnson ◽  
Silvio Däster ◽  
Serenella Eppenberger-Castori ◽  
...  

Tumors with elevated c-Myc expression often exhibit a highly aggressive phenotype, and c-Myc amplification has been shown to be frequent in esophageal cancer. Emerging data suggests that synthetic lethal interactions between c-Myc pathway activation and small molecules inhibition involved in cell cycle signaling can be therapeutically exploited to preferentially kill tumor cells. We therefore investigated whether exploiting elevated c-Myc expression is effective in treating esophageal cancer with the CDK inhibitor flavopiridol. We found frequent overexpression of c-Myc in human esophageal cancer cell lines and tissues. c-Myc overexpression correlated with accelerated esophageal cancer subcutaneous xenograft tumor growth. Esophageal cancer cells with elevated c-Myc expression were found preferentially more sensitive to induction of apoptosis by the CDK inhibition flavopiridol compared to esophageal cancer cells with lower c-Myc expression. In addition, we observed that flavopiridol alone or in combination with the chemotherapeutic agent nanoparticle albumin-bound paclitaxel (NPT) or in combinations with the targeted agent BMS-754807 significantly inhibited esophageal cancer cell proliferation and subcutaneous xenograft tumor growth while significantly enhancing overall mice survival. These results indicate that aggressive esophageal cancer cells with elevated c-Myc expression are sensitive to the CDK inhibitor flavopiridol, and that flavopiridol alone or in combination can be a potential therapy for c-Myc overexpressing esophageal cancer.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e16531-e16531
Author(s):  
Yichen Zhou ◽  
Honglei Zhu ◽  
Xuezhou Pang ◽  
Yang Shen ◽  
Yu He ◽  
...  

e16531 Background: The mechanism by which radiotherapy regulates PD-L1 expression and affects the biological behavior of esophageal cancer cells is not clear.The IL-6 /STAT3 signaling pathway may be involved. Methods: After irradiation of different doses to the esophageal cancer cell lines (Eca109, KYSE150, and TE1), RT-PCR and Western blotting were used to detect PD-L1, STAT3 and P-STAT3, ELISA was performed to examine the effects on IL-6, CCK-8 assays were used to test the effects on the proliferation. After the optimal dose radiation, Transwell assays were used to detect the invasion and proliferation of cell clones, and cell cycle changes were detected by flow cytometry. Results: The mRNA and the protein expression of PD-L1 in the cancer cell lines was significantly higher than in the normal esophageal cell line HET-1A(P < 0.01). The PD-L1 mRNA levels first increased and then decreased, which peaked 12 hours after 3,6,9,12Gy irradiation and was significantly higher than in nonirradiated cells (P < 0.05). PD-L1 protein expression first increased and then decreased, which peaked 48 hours after 6 Gy irradiation (P < 0.05). P-STAT3 protein expression first increased and then decreased after 6Gy irradiation (P < 0.05), that the expression in Eca109 peaked 48 hours but in KYSE150 and TE1 peaked 24 hours (P < 0.05). IL-6 protein expression peaked 12 hours and decreased gradually after irradiation (P < 0.05). The proliferation levels of the the cancer cell lines decreased after irradiation, and the inhibitory force increased with the increase in dose and time after radiotherapy (P < 0.05). The clone formation ability of the cancer cell lines was inhibited to varying degrees 14 days after irradiation with 6 Gy(P < 0.05). After 48 hours irradiation with 6 Gy, and the invasion ability of the cancer cell lines was lower than that of the nonirradiated cell lines (P < 0.05), and the proportion of cells in G2/M phase was higher in exposed cells than in nonexposed cells (P < 0.05), while the proportion of cells in S phase did not change significantly. Conclusions: PD-L1, IL-6 and STAT3 protein expression in the esophageal cancer cell lines first increased and then decreased consistency after irradiation, radiotherapy could regulate PD-L1 expression through the IL-6/STAT3 signaling pathway and affect the biological functions of esophageal cancer.


Author(s):  
Sang-ah Lim ◽  
Joon Young Lee ◽  
Won Ho Jung ◽  
Eun Hye Lim ◽  
Moon Kyung Joo ◽  
...  

2020 ◽  
Vol 41 (7) ◽  
pp. 894-903
Author(s):  
Yunyan Wu ◽  
Meixiang Sang ◽  
Fei Liu ◽  
Jiandong Zhang ◽  
Weijing Li ◽  
...  

Abstract Cancer testis antigens (CTAs) are promising targets for T cell-based immunotherapy and studies have shown that certain CT genes are epigenetically depressed in cancer cells through DNA demethylation. Melanoma-associated antigen A11 (MAGE-A11) is a CTA that is frequently expressed in esophageal cancer and is correlated with a poor esophageal cancer prognosis. Consequently, MAGE-A11 is a potential immunotherapy target. In this study, we evaluated MAGE-A11 expression in esophageal cancer cells and found that it was downregulated in several tumor cell lines, which restricted the effect of immunotherapy. Additionally, the specific recognition and lytic potential of cytotoxic T lymphocytes (CTLs) derived from the MAGE-A11 was determined. Specific CTLs could kill esophageal cancer cells expressing MAGE-A11 but rarely lysed MAGE-A11-negative tumor cells. Therefore, induction of MAGE-A11 expression is critical for CTLs recognition and lysis of esophageal cancer cells. Treatment with the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine increased MAGE-A11 expression in esophageal cancer cells and subsequently enhanced the cytotoxicity of MAGE-A11-specific CD8+T cells against cancer cell lines. Furthermore, we found that PD-L1 expression in esophageal cancer cells affected the antitumor function of CTLs. programmed death-1 (PD-1)/PD-L1 blockade could increase the specific CTL-induced lysis of HLA-A2+/MAGE-A11+ tumor cell lines treated with 5-aza-2′-deoxycytidine. These findings indicate that the treatment of tumor cells with the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine augments MAGE-A11 expression in esophageal cancer cells. The combination of epigenetic modulation by 5-aza-2′-deoxycytidine and PD-1/PD-L1 blockade may be useful for T cell-based immunotherapy against esophageal cancer.


2020 ◽  
Vol 43 (5) ◽  
pp. 847-861 ◽  
Author(s):  
David Esopi ◽  
Mindy Kim Graham ◽  
Jacqueline A. Brosnan-Cashman ◽  
Jennifer Meyers ◽  
Ajay Vaghasia ◽  
...  

Abstract Background In cancers, maintenance of telomeres often occurs through activation of the catalytic subunit of telomerase, encoded by TERT. Yet, most cancers show only modest levels of TERT gene expression, even in the context of activating hotspot promoter mutations (C228T and C250T). The role of epigenetic mechanisms, including DNA methylation, in regulating TERT gene expression in cancer cells is as yet not fully understood. Methods Here, we have carried out the most comprehensive characterization to date of TERT promoter methylation using ultra-deep bisulfite sequencing spanning the CpG island surrounding the core TERT promoter in 96 different human cell lines, including primary, immortalized and cancer cell types, as well as in control and reference samples. Results In general, we observed that immortalized and cancer cell lines were hypermethylated in a region upstream of the recurrent C228T and C250T TERT promoter mutations, while non-malignant primary cells were comparatively hypomethylated in this region. However, at the allele-level, we generally found that hypermethylation of promoter sequences in cancer cells is associated with repressed expression, and the remaining unmethylated alleles marked with open chromatin are largely responsible for the observed TERT expression in cancer cells. Conclusions Our findings suggest that hypermethylation of the TERT promoter alleles signals transcriptional repression of those alleles, leading to attenuation of TERT activation in cancer cells. This type of fine tuning of TERT expression may account for the modest activation of TERT expression in most cancers.


2013 ◽  
Vol 4 (7) ◽  
pp. 536-548 ◽  
Author(s):  
Taghreed N. Almanaa ◽  
Michael E. Geusz ◽  
Roudabeh J. Jamasbi

Sign in / Sign up

Export Citation Format

Share Document