Aurora kinases as novel drug targets in gastroenteropancreatic neuroendocrine tumor disease: Antiproliferative and pro-apoptotic effects of ZM 447439, a new aurora kinase inhibitor, in BON and QGP-1 cells

2008 ◽  
Vol 26 (15_suppl) ◽  
pp. 22023-22023
Author(s):  
P. Grabowski ◽  
I. Georgieva ◽  
Y. Wang ◽  
D. Koychev ◽  
S. Griss ◽  
...  
Blood ◽  
2010 ◽  
Vol 116 (9) ◽  
pp. 1498-1505 ◽  
Author(s):  
Jürgen den Hollander ◽  
Sara Rimpi ◽  
Joanne R. Doherty ◽  
Martina Rudelius ◽  
Andreas Buck ◽  
...  

Myc oncoproteins promote continuous cell growth, in part by controlling the transcription of key cell cycle regulators. Here, we report that c-Myc regulates the expression of Aurora A and B kinases (Aurka and Aurkb), and that Aurka and Aurkb transcripts and protein levels are highly elevated in Myc-driven B-cell lymphomas in both mice and humans. The induction of Aurka by Myc is transcriptional and is directly mediated via E-boxes, whereas Aurkb is regulated indirectly. Blocking Aurka/b kinase activity with a selective Aurora kinase inhibitor triggers transient mitotic arrest, polyploidization, and apoptosis of Myc-induced lymphomas. These phenotypes are selectively bypassed by a kinase inhibitor-resistant Aurkb mutant, demonstrating that Aurkb is the primary therapeutic target in the context of Myc. Importantly, apoptosis provoked by Aurk inhibition was p53 independent, suggesting that Aurka/Aurkb inhibitors will show efficacy in treating primary or relapsed malignancies having Myc involvement and/or loss of p53 function.


Cell Cycle ◽  
2019 ◽  
Vol 18 (18) ◽  
pp. 2281-2292
Author(s):  
Muhammad Furqan ◽  
Zille Huma ◽  
Zainab Ashfaq ◽  
Apsra Nasir ◽  
Rahim Ullah ◽  
...  

Author(s):  
Fatma Sogutlu ◽  
Cagla Kayabasi ◽  
Besra Ozmen Yelken ◽  
Aycan Asik ◽  
Roya Gasimli ◽  
...  

Background: Dysregulation of the cell cycle is one of the main causes of melanomagenesis. Genome-wide studies showed that expression of Aurora -A and -B significantly has been upregulated in melanoma. However, there is no FDA approved drug targeting aurora kinases in the treatment of melanoma. In addition, the development of resistance to chemotherapeutic agents in the treatment of melanoma and, as a result, the relapse due to heterogeneous cell groups in patients is a second phenomenon that causes treatment failure. Therefore, there is an urgent need for therapeutic alternatives targeting both melanoma and melanoma cancer stem cells (MCSCs) in treatments. At this stage, cell cycle regulators become promising targets. Objective: In this study, we aimed to identify the effects of Aurora kinase inhibitor CCT137690 on the cytotoxicity, apoptosis, cell cycle, migration, and colony formation and expression changes of genes related to proliferation, cell death and cell cycle in melanoma and melanoma cancer stem cell. In addition, we investigated the apoptotic and cytostatic effects of CCT137690 in normal fibroblast cells. Methods: We evaluated the cytotoxic effect of CCT137690 in MCSCs, NM2C5 referring as melanoma model cells and WI38 cells by using the WST-1 test. The effect of CCT137690 on apoptosis was detected via Annexin V and JC-1 method; on cell cycle progression by cell cycle test; on gene expression by using RT-PCR, on migration activity by wound healing assay and clonal growth by clonogenic assay in NM2C5 cells and MCSCs. The effects of CCT137690 in WI-38, referring as healthy fibroblast cell, were assessed through Annexin V and cell cycle method. Results: CCT137690 was determined to have a cytotoxic and apoptotic effect in MCSCs and melanoma. It caused polyploidy and cell cycle arrest at the G2/M phase in MCSCs and melanoma cells. The significant decrease in the expression of MMP2, MMP7, MMP10, CCNB1, IRAK1, PLK2 genes, and the increase in the expression of PTEN, CASP7, p53 genes were detected. Conclusion: Aurora kinases inhibitor CCT137690 displays promising anticancer activity in melanoma and especially melanoma cancer stem cells. The effect of CCT137690 on melanoma and MCSC may provide a new approach to treatment protocols.


2020 ◽  
Vol 19 (5) ◽  
pp. 300-300 ◽  
Author(s):  
Sorin Avram ◽  
Liliana Halip ◽  
Ramona Curpan ◽  
Tudor I. Oprea

Sign in / Sign up

Export Citation Format

Share Document