The novel non-boronic proteasome inhibitor S-2209 induces apoptosis and growth arrest in multiple myeloma cells

2008 ◽  
Vol 26 (15_suppl) ◽  
pp. 8581-8581
Author(s):  
P. Baumann ◽  
K. Müller ◽  
S. Mandl-Weber ◽  
R. Doblhofer ◽  
A. Ammendola ◽  
...  
Blood ◽  
2006 ◽  
Vol 107 (10) ◽  
pp. 4063-4070 ◽  
Author(s):  
Apollina Goel ◽  
Angela Dispenzieri ◽  
Susan M. Geyer ◽  
Suzanne Greiner ◽  
Kah-Whye Peng ◽  
...  

Multiple myeloma is a highly radiosensitive skeletal malignancy, but bone-seeking radionuclides have not yet found their place in disease management. We previously reported that the proteasome inhibitor PS-341 selectively sensitizes myeloma cells to the lethal effects of ionizing radiation. To extend these observations to an in vivo model, we combined PS-341 with the bone-seeking radionuclide 153-Sm-EDTMP. In vitro clonogenic assays demonstrated synergistic killing of myeloma cells exposed to both PS-341 and 153-Sm-EDTMP. Using the orthotopic, syngeneic 5TGM1 myeloma model, the median survivals of mice treated with saline, 2 doses of PS-341 (0.5 mg/kg), or a single nonmyeloablative dose of 153-Sm-EDTMP (22.5 MBq) were 21, 22, and 28 days, respectively. In contrast, mice treated with combination therapy comprising 2 doses of PS-341 (0.5 mg/kg), 1 day prior to and 1 day following 153-Sm-EDTMP (22.5 MBq) showed a significantly prolonged median survival of 49 days (P < .001). In addition to prolonged survival, this treatment combination yielded reduced clonogenicity of bone marrow–resident 5TGM1 cells, reduced serum myeloma–associated paraprotein levels, and better preservation of bone mineral density. Myelosuppression, determined by peripheral blood cell counts and clonogenicity assays of hematopoietic progenitors, did not differ between animals treated with 153-Sm-EDTMP alone versus those treated with the combination of PS-341 plus 153-Sm-EDTMP. PS-341 is a potent, selective in vivo radiosensitizer that may substantially affect the efficacy of skeletal-targeted radiotherapy in multiple myeloma.


2011 ◽  
Vol 17 (16) ◽  
pp. 5311-5321 ◽  
Author(s):  
Dharminder Chauhan ◽  
Ze Tian ◽  
Bin Zhou ◽  
Deborah Kuhn ◽  
Robert Orlowski ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3417-3417
Author(s):  
Yutaka Okuno ◽  
Hiro Tatetsu ◽  
Shikiko Ueno ◽  
Hiroyuki Hata ◽  
Yasuhiro Yamada ◽  
...  

Abstract It has been reported that disruption of transcription factors critical for hematopoiesis, such as C/EBPa and AML1, is involved in leukemogenesis. PU.1 is a transcription factor important for both myeloid and lymphoid development. We reported that mice in which the levels of PU.1 were 20% of that of wild-type developed acute myeloid leukemia, T cell lymphoma, and a CLL-like disease. These findings strongly suggest that PU.1 has tumor suppressive activity in multiple hematopoietic lineages. Last year, we reported that PU.1 is downregulated in a majority of multiple myeloma cell lines and and freshly isolated CD138 positive myeloma cells from certain number of myeloma patients, and that tet-off inducible exogenous expression of PU.1 in PU.1 negative myeloma cell lines induced cell growth arrest and apoptosis. Based on their PU.1 expression levels, we divided the myeloma patients into two groups, namely PU.1 high and PU.1 low-to-negative, (cutoff index of 25th percentile of the PU.1 expression level distribution among all patients). The PU.1 low-to-negative patients had a significantly poorer prognosis than the PU.1 high patients. To elucidate the mechanisms of downregulation of PU.1, we performed sequence and epigenetic analysis of the promoter region and the -17 kb upstream region that is conserved among mammalians and important for proper expression of PU.1. There are no mutations in these regions of all five myeloma cell lines. In contrast, the -17 kb upstream region was highly methylated in 3 of 4 PU.1 negative myeloma cell lines, while the promoter region was also methylated to various levels in all five myeloma cell lines including one PU.1 positive cell line. These data suggested that the downregulation of PU.1 in myeloma cell lines might be dependent on the methylation of both regulatory regions of PU.1 gene, especially the -17 kb upstream region. We also evaluated the mechanisms of cell growth arrest and apoptosis of myeloma cell lines induced by PU.1. Among apoptosis-related genes, we identified that TRAIL was upregulated after PU.1 induction. To evaluate the effect of upregulation of TRAIL, we stably introduced siRNA for TRAIL into myeloma cell lines expressing PU.1, and we found that apoptosis of these cells was partially suppressed by siRNA for TRAIL, suggesting that apoptosis of myeloma cells induced by PU.1 might be at least partially due to TRAIL upregulation. We are currently performing DNA microarray analysis to compare the expression levels of genes between before and after PU.1 induction, in order to further elucidate the mechanisms of cell growth arrest and apoptosis.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2856-2856 ◽  
Author(s):  
Dirk Hose ◽  
Anja Seckinger ◽  
Hartmut Goldschmidt ◽  
Tobias Meiβner ◽  
Blanka Rebacz ◽  
...  

Abstract Abstract 2856 Poster Board II-832 BACKGROUND. Molecular profiling of multiple myeloma allows the identification of novel targets, including HIF1A, and evaluation of their expression within large cohorts of patients. We report here the expression of HIF1A in myeloma and for the first time the preclinical testing of 4 members of a novel class of sulfonanilide HIF1A signaling inhibitors. PATIENTS AND METHODS. Expression of HIF1A was assessed using Affymetrix DNA-microarrays in 329 samples of CD138-purified myeloma cells from previously untreated patients. Chromosomal aberrations were assessed by comprehensive iFISH using a set of probes for the chromosomal regions 1q21, 6q21, 8p21, 9q34, 11q23, 11q13, 13q14.3, 14q32, 15q22, 17p13, 19q13, 22q11, as well as the translocations t(4;14)(p16.3;q32.3) and t(11;14)(q13;q32.3). Proliferation of primary myeloma cells (n=67) was determined by propidium iodine staining. The effect of the novel HIF1A signaling inhibitors ELR510490, ELR510454, ELR510444 and ELR105813 on the proliferation of 12 human myeloma cell lines and the first three on the survival of 5 primary myeloma cell-samples cultured within their microenvironment was tested, and their ability to inhibit HIF1A signaling was examined using a cell-based reporter assay. Studies were also conducted to determine in vitro stability (in plasma and microsomes), as well as single-dose PK (SDPK) parameters and maximum tolerated dose (MTD) levels after dosing in mice. RESULTS. We found (i) HIF1A to be expressed by 95.4% of CD138-purified primary myeloma cell samples from previously untreated patients. (ii) HIF1A expression shows a weak but significant correlation (r=0.3, p<0.001) with a gene expression based proliferation index. (iii) Of the chromosomal aberrations tested, myeloma cells of patients with presence of a translocation t(4,14) show a significantly higher expression of HIF1A (p<0.001) vs. patients without. Myeloma cells of hyperdiploid patients show a significantly lower expression of HIF1A (p=0.02) vs. non hyperdiploid patients. (iii) HIF1A expression does not show a correlation with event-free or overall survival. (iv) The sulfonanilides ELR510490, ELR510444, ELR510454 and ELR105813 completely inhibit proliferation of all tested myeloma cell lines at nM concentrations. (v) The compounds tested, i.e. ELR510490, ELR510444, ELR510454, are active on all primary myeloma cell-samples tested. (vi) The compounds show a pronounced effect on the HIF1A signaling pathway at EC50s of 1-25nM. (vii) Pre-clinical pharmacology data for the compounds ELR510444 and ELR510490 in mice indicate favorable absorption, distribution, metabolism, and excretion (ADME) profiles as well as exposure levels upon dosing at well-tolerated levels that are significantly above the in vitro EC50 in all the cell lines tested. CONCLUSION. HIF1A is expressed in almost all primary myeloma cells. The novel HIF1A signaling inhibitors tested are very active on myeloma cell lines as well as primary myeloma cells and show favorable in vivo profiles with exposure levels in mice significantly higher than the concentrations required for the inhibition of cell proliferation or apoptosis induction in vitro. This class of compounds thus represents a promising weapon in the therapeutic arsenal against multiple myeloma. Disclosures: Rebacz: ELARA Pharmaceuticals: Employment. Lewis:ELARA Pharmaceuticals: Employment. Schultes:ELARA Pharmaceuticals: Employment.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1899-1899
Author(s):  
Martin Kaiser ◽  
Maren Mieth ◽  
Orhan Sezer ◽  
Ulrike Heider

Abstract Abstract 1899 Introduction In multiple myeloma (MM), interactions of the malignant plasma cell clone with the bone marrow microenvironment lead to an enhanced osteoclast recruitment and impaired osteoblast activity. The proteasome inhibitor bortezomib has been shown to suppress osteoclast activity, and there is recent evidence that bortezomib enhances osteoblast differentiation. The aim of this study was to investigate the effects of bortezomib on human osteoblast precursors, focusing on vitamin D (VD) dependent osteoblastic differentiation. Since vitamin D receptor (VDR) is degraded by the proteasome, we hypothesized that bortezomib could influence its signaling and hence vitamin D induced osteoblastic differentiation. This might be of clinical importance, since an increased rate of vitamin D deficiency has recently been reported in patients with MM. Methods Primary human mesenchymal stem cells (hMSC) and primary human osteoblasts (hOB) were isolated from bone marrow aspirates or from bone fragments of healthy donors undergoing orthopedic surgery, respectively. Ascorbic acid and β-glycerolphosphate were used for osteoblastic stimulation (OS), either in combination with or without vitamin D. In order to analyze the effects of proteasome inhibition on osteoblastic differentiation and activity, hMSC and hOB were incubated with bortezomib at subapoptotic doses (1 - 5 nM). In addition, coculture experiments of hMSC, hOB and myeloma cells were performed. Expression of osteocalcin and osteopontin (OPN) were quantified by real-time PCR as markers of osteoblastic lineage differentiation. Expression of VDR was analyzed by western blot in subcellular fractions and VDR signaling was investigated using luciferase reporter assays. Results In coculture experiments, myeloma cells inhibited the vitamin D dependent differentiation and activity of osteoblast precursors, e.g. coculture of hMSC with the myeloma cell line LP-1 for 4 days decreased their osteocalcin expression by 58%. Treatment with bortezomib led to an increased osteoblastic differentiation of hMSC and hOB by OS, represented by an enhanced expression of osteoblast markers osteocalcin and OPN. Importantly, this effect could be further increased, when vitamin D was added. In hMSC stimulated with OS only, addition of 5 nM bortezomib led to an 18.3 fold increase in OPN mRNA expression. In comparison, hMSC stimulated with OS + vitamin D showed a 27.5 fold increase in OPN mRNA with the addition of bortezomib. Osteocalcin expression was increased 1.9 fold by bortezomib in the presence of OS and vitamin D, but not with OS alone. Similar results were obtained with osteoblasts: Incubation with bortezomib slightly increased osteocalcin and OPN mRNA expression in cells stimulated with OS only (1.3 fold and 2.4 fold, respectively). In comparison, in cells stimulated with OS and vitamin D, bortezomib elevated osteocalcin and OPN expression 2.9 fold and 5.5 fold, respectively. Bortezomib led to an increase in nuclear VDR levels in hMSC in western blot analyses. Primary hMSC transfected with a VDR luciferase reporter construct showed a 3.7 fold increase in VDR signaling with bortezomib. Conclusion Our data show that bortezomib stimulates osteoblastic differentiation of hMSCs and hOBs and acts, at least in part, through VDR signaling. Substitution of vitamin D in multiple myeloma patients treated with bortezomib may be beneficial for bone turnover and needs clinical evaluation. Disclosures: Kaiser: Johnson & Johnson: Research Funding. Mieth:Johnson & Johnson: Research Funding. Sezer:Johnson & Johnson: Research Funding. Heider:Johnson & Johnson: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document