Complementary role of Ki67 index and 70-gene signature (MammaPrint) high-risk patients in the St Gallen risk group with uncertain chemotherapy suggestion.

2012 ◽  
Vol 30 (15_suppl) ◽  
pp. 579-579 ◽  
Author(s):  
Paolo Pronzato ◽  
Giorgio Mustacchi ◽  
Daniele Giulio Generali ◽  
Alberto Bottini

579 Background: St Gallen (SG) Consensus Panel on adjuvant treatment recommends the use of proliferation markers and multigene assays when choosing the appropriate treatment in addition to traditional parameters. Ki67 predictive/prognostic value is widely accepted; we tested its role in increasing the accuracy of risk prediction among Mammaprint (MP) /High(HR) or /Low Risk (LR) breast cancer patients with a SG risk uncertain for chemotherapy selection. Methods: MP was determined (courtesy of Agendia, Amsterdam) in 3 Italian Hospitals on 305 consecutive samples of breast cancer patients. We focused on SG “Intermediate Risk” Group (HER2 neg, no VI and: ER>10<50%, or G2 or Ki67 >15<30% or N1a or T>2<5cm), where the indication for adjuvant CHT still remains uncertain. In MP/HR cases, a “low” Ki67 value (<15%) was used to eliminate CHT suggestion and viceversa an “intermediate” Ki67 value (>15<30%) in MP/LR cases. Results: Overall, 72/305 pts (26.6%) were in SG intermediate risk group with a median age of 64 years (26-98). Ki67 was non available in 4.1% of cases, MP rejected in 16.6%, HR was detected in 39 (54.2%), whereas LR in 21 (29.2%). Ki67 resulted low in 23 MP/HR cases (59%), intermediate in 6 MP/LR cases (28.5%) and in 3 out 12 MP/Rejected cases (25%). The overall concordance between MP and Ki67 was 28/57 (49.1%), MP rejected excluded. Overall MP suggested 39/60 CHT (65%), Ki67 29/69 (42%). Conclusions: The risk of relapse is a continous variable and MP evaluates it in a dichotomy (low vs high) wich could decrease the accuracy of the test. In the selected SG Group, the average risk of 5 yr relapse is around 20% (EBCTCG, Lancet 2011) and MP HR cases in our experience account for 55%. A low Ki67 value could help avoid more than 20% of cytotoxic treatments suggested by MP. In the same way, according to an ER value <50% (2 cases), an intermediate Ki67 value could suggest a more aggressive treatment in a further 13% of cases MP LR (6/21) or Rejected (3/12). MP probably overestimates the risk in 20% of cases and underestimates it in further 20%. Ki67 could be usefull for a more personalized treatment in patients where the indication for adjuvant chemotherapy added to endocrine treatment is uncertain.

2020 ◽  
Author(s):  
Jianing Tang ◽  
Gaosong Wu

Abstract Background Metabolic change is the hallmark of cancer. Even in the presence of oxygen, cancer cells reprogram their glucose metabolism to enhance glycolysis and reduce oxidative phosphorylation. In the present study, we aimed to develop a glycolysis-related gene signature to predict the prognosis of breast cancer patients.Methods Gene expression profiles and clinical data of breast cancer patients were obtained from the GEO database. Univariate, Lasso-penalized, and multivariate Cox analysis were performed to construct the glycolysis-related gene signature.Results A four-gene based signature (ALDH2, PRKACB, STMN1 and ZNF292) was developed to separate patients into high-risk and low-risk groups. Kaplan-Meier survival analysis demonstrated that patients in low-risk group had significantly better prognosis than those in the high-risk group. Time-dependent ROC analysis demonstrated that the glycolysis-related gene signature had excellent prognostic accuracy. We further confirmed the expression of the four prognostic genes in breast cancer and paracancerous tissues samples using qRT-PCR analysis. Expression level of PRKACB was higher in paracancerous tissues, while STMN1 and ZNF292 were overexpressed in tumor samples. No difference was found in ALDH2 expression. The same results were observed in the IHC data from the human protein atlas. Global proteome data of 105 TCGA breast cancer samples obtained from the Clinical Proteomic Tumor Analysis Consortium were used to evaluate the prognostic value of their protein levels. Consistently, high expression of PRKACB protein level was associated with better prognosis, while high ZNF292 and STMN1 protein expression levels indicated poor prognosis.Conclusions The glycolysis-related gene signature might provide an effective prognostic predictor and a new view for individual treatment of breast cancer patients.


2020 ◽  
Vol 31 ◽  
pp. S322-S323
Author(s):  
C.F. Jacobs ◽  
S.A.L. Bartels ◽  
C.E. Loo ◽  
C. Smorenburg ◽  
S. Linn ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Sanne Løkkegaard ◽  
Daniel Elias ◽  
Carla L. Alves ◽  
Martin V. Bennetzen ◽  
Anne-Vibeke Lænkholm ◽  
...  

AbstractResistance to endocrine therapy in estrogen receptor-positive (ER+) breast cancer is a major clinical problem with poorly understood mechanisms. There is an unmet need for prognostic and predictive biomarkers to allow appropriate therapeutic targeting. We evaluated the mechanism by which minichromosome maintenance protein 3 (MCM3) influences endocrine resistance and its predictive/prognostic potential in ER+ breast cancer. We discovered that ER+ breast cancer cells survive tamoxifen and letrozole treatments through upregulation of minichromosome maintenance proteins (MCMs), including MCM3, which are key molecules in the cell cycle and DNA replication. Lowering MCM3 expression in endocrine-resistant cells restored drug sensitivity and altered phosphorylation of cell cycle regulators, including p53(Ser315,33), CHK1(Ser317), and cdc25b(Ser323), suggesting that the interaction of MCM3 with cell cycle proteins is an important mechanism of overcoming replicative stress and anti-proliferative effects of endocrine treatments. Interestingly, the MCM3 levels did not affect the efficacy of growth inhibitory by CDK4/6 inhibitors. Evaluation of MCM3 levels in primary tumors from four independent cohorts of breast cancer patients receiving adjuvant tamoxifen mono-therapy or no adjuvant treatment, including the Stockholm tamoxifen (STO-3) trial, showed MCM3 to be an independent prognostic marker adding information beyond Ki67. In addition, MCM3 was shown to be a predictive marker of response to endocrine treatment. Our study reveals a coordinated signaling network centered around MCM3 that limits response to endocrine therapy in ER+ breast cancer and identifies MCM3 as a clinically useful prognostic and predictive biomarker that allows personalized treatment of ER+ breast cancer patients.


Author(s):  
Menha Swellam ◽  
Hekmat M EL Magdoub ◽  
May A Shawki ◽  
Marwa Adel ◽  
Mona M Hefny ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 771
Author(s):  
Tessa A. M. Mulder ◽  
Mirjam de With ◽  
Marzia del Re ◽  
Romano Danesi ◽  
Ron H. J. Mathijssen ◽  
...  

Tamoxifen is a major option for adjuvant endocrine treatment in estrogen receptor (ER) positive breast cancer patients. The conversion of the prodrug tamoxifen into the most active metabolite endoxifen is mainly catalyzed by the enzyme cytochrome P450 2D6 (CYP2D6). Genetic variation in the CYP2D6 gene leads to altered enzyme activity, which influences endoxifen formation and thereby potentially therapy outcome. The association between genetically compromised CYP2D6 activity and low endoxifen plasma concentrations is generally accepted, and it was shown that tamoxifen dose increments in compromised patients resulted in higher endoxifen concentrations. However, the correlation between CYP2D6 genotype and clinical outcome is still under debate. This has led to genotype-based tamoxifen dosing recommendations by the Clinical Pharmacogenetic Implementation Consortium (CPIC) in 2018, whereas in 2019, the European Society of Medical Oncology (ESMO) discouraged the use of CYP2D6 genotyping in clinical practice for tamoxifen therapy. This paper describes the latest developments on CYP2D6 genotyping in relation to endoxifen plasma concentrations and tamoxifen-related clinical outcome. Therefore, we focused on Pharmacogenetic publications from 2018 (CPIC publication) to 2021 in order to shed a light on the current status of this debate.


2009 ◽  
Vol 120 (1) ◽  
pp. 25-34 ◽  
Author(s):  
Dung-Tsa Chen ◽  
Aejaz Nasir ◽  
Chinnambally Venkataramu ◽  
William Fulp ◽  
Mike Gruidl ◽  
...  

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e12526-e12526
Author(s):  
Xiaying Kuang ◽  
Du Cai ◽  
Ying Lin ◽  
Feng Gao

e12526 Background: Luminal B breast cancer is always routinely treated with chemotherapy and endocrine therapy but heterogeneous with respect to sensitivity to treatment, identification of patients who may most benefit remains a matter of controversy. Immune-related genes (IRGs) was found to be associated with the prognosis of breast cancer. The aim of this study is to evaluate the impact of IRGs in predicting the outcome of luminal B breast cancer patients. Methods: According to the Metabric microarray dataset also as a training cohort, 488 luminal B breast cancer patients were selected for generation of immune-related gene signature (IRGS). Another independent dataset (n=250) of patients with complete prognostic information was analyzed as a validation cohort. Prognostic analysis was assessed to test the predictive value of IRGS. Results: A model of prognostic IRGS containing 12 immune-related genes was developed. In both training and validation cohorts, IRGS significantly stratified luminal B breast cancer patients into immune low- and high-risk groups in terms of disease free survival (DFS, HR=4.95, 95% CI=3.22-7.62, P<0.001 in training cohort, HR=2.47, 95% CI=1.29-4.75, P<0.001 in validation cohort). Multivariate analysis revealed IRGS as an independent prognostic factor (HR=4.96, 95% CI=3.00-8.18, P<0.001 in training cohort, HR=2.56, 95% CI=1.28-5.09, P=0.007 in validation cohort). Furthermore, those 12 genes mostly related with response to chemical, and the expression levels of them were completely opposite in patients of immune low- and high-risk groups. Conclusions: The proposed IRGS is a satisfactory prognostic model for estimating DFS of luminal B breast cancer patients. Further studies are needed to assess the clinical effectiveness of this system in predicting prognosis and treatment options for luminal B breast cancer patients. This work was supported by National Natural Science Foundation of China (No. 81602520), Natural Science Foundation of Guangdong Province (No. 2017A030313596).


2021 ◽  
Author(s):  
juanjuan Qiu ◽  
Li Xu ◽  
Yu Wang ◽  
Jia Zhang ◽  
Jiqiao Yang ◽  
...  

Abstract Background Although the results of gene testing can guide early breast cancer patients with HR+, HER2- to decide whether they need chemotherapy, there are still many patients worldwide whose problems cannot be solved well by genetic testing. Methods 144 735 patients with HR+, HER2-, pT1-3N0-1 breast cancer from the Surveillance, Epidemiology, and End Results database were included from 2010 to 2015. They were divided into chemotherapy (n = 38 392) and no chemotherapy (n = 106 343) group, and after propensity score matching, 23 297 pairs of patients were left. Overall survival (OS) and breast cancer-specific survival (BCSS) were tested by Kaplan–Meier plot and log-rank test and Cox proportional hazards regression model was used to identify independent prognostic factors. A nomogram was constructed and validated by C-index and calibrate curves. Patients were divided into high- or low-risk group according to their nomogram score using X-tile. Results Patients receiving chemotherapy had better OS before and after matching (p < 0.05) but BCSS was not significantly different between patients with and without chemotherapy after matching: hazard ratio (HR) 1.005 (95%CI 0.897, 1.126). Independent prognostic factors were included to construct the nomogram to predict BCSS of patients without chemotherapy. Patients in the high-risk group (score > 238) can get better OS HR 0.583 (0.507, 0.671) and BCSS HR 0.791 (0.663, 0.944) from chemotherapy but the low-risk group (score ≤ 238) cannot. Conclusion The well-validated nomogram and a risk stratification model was built. Patients in the high-risk group should receive chemotherapy while patients in low-risk group may be exempt from chemotherapy.


2011 ◽  
Vol 105 (11) ◽  
pp. 1676-1683 ◽  
Author(s):  
K B Lundin ◽  
M Henningson ◽  
M Hietala ◽  
C Ingvar ◽  
C Rose ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document