Effects of removing heat and phlegm prescription on the proliferation and autoantigens expression of esophageal carcinoma cell.

2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e16510-e16510
Author(s):  
Fuchun Si

e16510 Background: o explore the effects of removing heat and phlegm prescription (RHPP) on the proliferation and autoantigens expression of esophageal carcinoma(EC) cell, so as to provide basis for the molecular pathogenesis and clinical medication of EC. Methods: RHPP was developed by us for treating EC, EC autoantigens CK13, CK16, CaD, ACTG2 were identified in our previous studies. The effects of RHPP and and its ethanol extraction on the proliferation, cell cycle and autoantigen protein expression of Eca109 cell, EC9706 cell and TE-1 cell were investigated by MTT assay, flow cytometry and western blot analysis. Results: RHPP and its removing heat (RH) and removing phlegm (RP) separated prescriptions all have inhibitory effects on the proliferation of EC9706, EC109 and TE-1 cells in dose-dependent and time-dependent manner, changed morphology of four esophageal carcinoma cells, which appeared as round with rough edges, karyopyknosis, and karyorrhexis. Ic50 values of RHPP for Ec9706, Eca109 and TE1 cell were 33.31 ug·ml−1, 20.70 ug·ml−1, 21.93 ug·ml−1 respectively, while Ic50 values of RHPP’s ethanol extraction for Ec9706, Eca109, TE1 were 0.653 ug·ml−1, 0.082 ug·ml−1, 0.172 ug·ml−1 respectively. RHPP and RP induced G2/M phase arrest in EC109 and TE-1 cells, while RH induced G0/G1 phase arrest in EC109 and TE-1 cells; RHPP and RP induced G0/G1 phase arrest in EC9706 cells, while RH induced S phase arrest in EC9706 cells. RHPP and its two separated prescription could downregulate CK16, CaD, ACTG2 expression and upregulate CK13 expression. Conclusions: Autoantigens CK13, CK16, CaD and ACTG2 were expressed in EC cell, RHPP could regulate these four autoantigens expression. This study provides new basis for the EC mlecular mechanism and development of anti-esophageal carcinoma drugs in traditional Chinese medicine.

2016 ◽  
Vol 40 (1-2) ◽  
pp. 297-308 ◽  
Author(s):  
Yongxia Zhu ◽  
Wei Wei ◽  
Tinghong Ye ◽  
Zhihao Liu ◽  
Li Liu ◽  
...  

Background: Cancer is still a major public health issue worldwide, and new therapeutics with anti-tumor activity are still urgently needed. Methods: The anti-tumor activity of TH-39, which shows potent anti-proliferative activity against K562 cells with an IC50 of 0.78 µM, was investigated using immunoblot, co-immunoprecipitation, the MTT assay, and flow cytometry. Results: Mechanistically, TH-39 may disrupt the interaction between Hec1 and Nek2 in K562 cells. Moreover, TH-39 inhibited cell proliferation in a concentration- and time-dependent manner by influencing the morphology of K562 cells and inducing G0/G1 phase arrest. G0/G1 phase arrest was associated with down-regulation of CDK2-cyclin E complex and CDK4/6-cyclin D complex activities. Furthermore, TH-39 also induced cell apoptosis, which was associated with activation of caspase-3, down-regulation of Bcl-2 expression and up-regulation of Bax. TH-39 could also decrease mitochondrial membrane potential (Δψm) and increase reactive oxygen species (ROS) accumulation in K562 cells. The results indicated that TH-39 might induce apoptosis via the ROS-mitochondrial apoptotic pathway. Conclusion: This study highlights the potential therapeutic efficacy of the anti-cancer compound TH-39 in treatment-resistant chronic myeloid leukemia.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1760-1760
Author(s):  
Irina Sadovnik ◽  
Peter Valent ◽  
Els Lierman ◽  
Harald Herrmann ◽  
Barbara Peter ◽  
...  

Abstract Abstract 1760 In chronic eosinophilic leukemia (CEL), the transforming oncoprotein FIP1L1-PDGFRA (F/P) is a major target of therapy. In most patients, the PDGFRA-targeting tyrosine kinase inhibitor (TKI) imatinib induces complete and durable molecular remissions. For patients who are intolerant or resistant against imatinib, novel TKI may serve as potential alternative therapy. Indeed, several different TKI have been described to act on Ba/F3 cells transfected with F/P, and some even block the activity of imatinib-resistant F/P mutants. However, little is known about the effects of novel TKI on growth and survival of primary neoplastic eosinophils. In the current study, we examined the in vitro effects of 12 kinase blockers on growth and viability as well as cytokine-induced migration of EOL-1 cells, a human F/P+ eosinophil leukemia cell line. In addition, we examined TKI effects on primary human neoplastic eosinophils obtained from a patient with F/P+ CEL, one with aggressive systemic mastocytosis and massive eosinophilia (ASM-eo) and one with reactive hypereosinophilia (HE). In EOL-1 cells, major growth-inhibitory effects were seen with all PDGFRA-blocking agents, with IC50 values in the low nM-range: ponatinib: 0.1–0.2 nM, sorafenib: 0.1–0.2 nM, masitinib: 0.2–0.5 nM, nilotinib: 0.2–2 nM, dasatinib: 0.5–2 nM, sunitinib: 1–2 nM, and midostaurin: 5–10 nM. These drugs were also found to block the activity of PDGFR-downstream signaling molecules, including Akt, S6, and STAT5 in EOL-1 cells. Targeting of individual downstream molecules with specific inhibitors (PI3-kinase: NVP-BEZ235; mTOR: everolimus; STAT5: pimozide and piceatannol) also induced growth-inhibition in EOL-1 cells, although IC50 values were higher compared to that obtained with PDGFR-blocking TKI. All effective TKI produced dose-dependent apoptosis in EOL-1 cells as determined by microscopy, Annexin-V/PI staining, and staining for active caspase-3. In a next step, we applied the most effective TKI on primary neoplastic eosinophils. In these experiments, ponatinib, dasatinib, and nilotinib were found to suppress the growth of primary neoplastic eosinophils obtained from a patient with F/P+ CEL and one with ASM-eo, in a dose-dependent manner (IC50 <0.5 μM). In the patient with reactive HE, the TKI also produced growth inhibition, but IC50 values were higher compared to neoplastic eosinophils. We also examined drug effects on growth of Ba/F3 cells expressing the imatinib-resistant F/P mutants T674I and D842V. In these experiments, sunitinib was found to inhibit the growth of Ba/F3 cells expressing the T674I mutant of F/P. By contrast, no substantial effects of masitinib or nilotinib on Ba/F3 cells expressing this mutant were found, and Ba/F3 cells expressing F/P D842V were found to be resistant against sunitinib and masitinib. Strong inhibitory effects on both mutants were only seen with ponatinib. We next examined the effects of various TKI on cytokine-induced migration of neoplastic eosinophils. Unexpectedly, of all cytokines tested including IL-5 and eotaxin, only SDF-1A was found to induce in vitro migration of EOL-1 cells. We found that imatinib, nilotinib, dasatinib, ponatinib, sorafenib, and masitinib inhibit SDF-1A-induced migration of EOL-1 cells in a dose-dependent manner (effective range: 10–100 nM). Finally, we analyzed TKI effects on expression of activation-linked cell surface antigens on EOL-1 cells. In these experiments, we found that ponatinib and sorafenib downregulate expression of CD25 and CD63 in EOL-1 cells, whereas the other TKI tested showed no effects. By contrast, no effects of ponatinib or sorafenib on expression of HLA-DR, CXCR4 and CD95 on EOL-1 cells were seen. We were also unable to detect any significant effects of the other TKI on expression of activation-linked cell surface antigens in EOL-1 cells. In summary, our data show that various novel TKI counteract growth, survival, activation, and migration of neoplastic human eosinophils. The most potent agent that also blocks all known mutant-forms of F/P appears to be ponatinib. Novel PDGFR-targeting TKI, such as ponatinib, may be attractive alternative drugs for the treatment of imatinib-resistant or intolerant CEL. Disclosures: Valent: Phadia: Research Funding.


2013 ◽  
Vol 790 ◽  
pp. 594-597 ◽  
Author(s):  
Zhong Yuan Qu ◽  
Xiang Zou ◽  
Jing Wen Zhao ◽  
Yu Bin Ji

To study the effect of chelidonine on Cdk1, p-Cdk1( Thr14), cyclinB1 protein expression in SGC-7901 Cells, and to explore the mechanism of chelidonine inducing G2/M phase arrest in SGC-7901 Cells. Western Blotting was used to study the effects of chelidonine on the Cdk1, p-Cdk1(Thr14) and cyclinB1 protein expressions in SGC-7901 cells. Chelidonine could significantly decrease the expression of Cdk1 and cyclinB1 protein. Meanwhile, chelidonine could remarkably increase the expression of p-Cdk1(Thr14) protein in a dose dependent manner. Chelidonine can down-regulate the expression of Cdk1, cyclinB1 and up-regulate p-Cdk1 (Thr14) protein expression in SGC-7901 cells,which may be one of the role mechanism of G2 /M phase arrest induced by chelidonine in SGC-7901 cells which may be one of the role mechanism of G2 /M phase arrest induced by chelidonine in SGC-7901 Cells.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3497-3497
Author(s):  
Karoline V. Gleixner ◽  
Katharina Blatt ◽  
Barbara Peter ◽  
Emir Hadzijusufovic ◽  
Peter Valent

Abstract Abstract 3497 Aggressive systemic mastocytosis (ASM) and mast cell leukemia (MCL) have a poor prognosis. In these patients, neoplastic mast cells (MC) usually harbor the D816V-mutated variant of KIT and are resistant to conventional cytoreductive drugs and to several tyrosine kinase inhibitors (TKI) such as imatinib. More recently, various KIT kinase blockers including midostaurin (PKC412), have been described to overcome KIT D816V-mediated resistance in neoplastic MC. However, despite encouraging first results observed in clinical trials, these novel kinase blockers are unable to induce long-lasting complete remissions in all patients with ASM and MCL. One reason for the poor response in these patients may be the expression and activation of additional KIT-independent pro-oncogenic signalling molecules and pathways that trigger survival of neoplastic MC. Therefore, current research is seeking novel broadly acting drugs and drug combinations directed against the pro-oncogenic signaling machinery of neoplastic MC. Ponatinib (AP24534) is a broadly acting novel multikinase inhibitor that has been shown to exert major anti-leukemic effects in chronic myeloid leukemia. The aim of our current study was to evaluate the effects of ponatinib on growth and survival of neoplastic MC. Ponatinib was applied as single agent or in combination with midostaurin (PKC412). As assessed by Western blotting, ponatinib was found to inhibit KIT-phosphorylation in both subclones of the human MC leukemia cell line HMC-1, namely HMC-1.1 harboring KIT G560V but not KIT D816V, and HMC-1.2 cells harboring KIT G560V and KIT D816V. Interestingly, the D816V mutation of KIT was found to induce relative resistance against ponatinib. Ponatinib was also found to counteract the phosphorylation of Lyn, a Src-kinase that serves as a major KIT-independent signalling molecule and survival factor in neoplastic MC. Activated STAT5 in MC was also blocked by ponatinib in a dose-dependent manner. In a next step, we examined the effects of ponatinib on proliferation of neoplastic MC by 3H-thymidine uptake experiments. Ponatinib was found to induce dose-dependent growth inhibition in both HMC-1 subclones, with higher IC50-values in HMC-1 cells harbouring KIT D816V (IC50: 100–500 nM) compared to cells lacking KIT D816V (IC50: 1–10 nM). Furthermore, ponatinib was found to inhibit the proliferation of primary neoplastic MC isolated from patients with indolent SM (ISM, n=2) and ASM (n=1), with IC50-values ranging between 50 nM and 500 nM. Growth inhibitory effects of ponatinib on neoplastic MC were accompanied by induction of apoptosis as assessed by light microscopy, flow cytometry, and TUNEL assay. Finally, we were able to demonstrate that ponatinib synergizes with midostaurin in producing growth-inhibition and apoptosis in HMC-1.1 cells and HMC-1.2 cells. Synergistic effects obtained with suboptimal concentrations of single agents were accompanied by a complete blockage of all relevant kinase targets tested including KIT, Lyn, and STAT5. In conclusion, ponatinib exerts major growth-inhibitory effects on neoplastic MC. KIT D816V-expressing MC are less sensitive to ponatinib. This relative resistance of MC against ponatinib can be overcome by combining ponatinib with midostaurin in an in vitro assay. Whether the drug-combination also exerts major anti-neoplastic effects in vivo in patients with ASM and MCL remains to be determined. Disclosures: Valent: Novartis: Consultancy, Honoraria, Research Funding.


2011 ◽  
Vol 39 (04) ◽  
pp. 817-825 ◽  
Author(s):  
Ya-Jun Lin ◽  
Yong-Zhan Zhen ◽  
Yu-Fang Zhao ◽  
Jie Wei ◽  
Gang Hu

Rhein lysinate (RHL), easily dissolved in water, is one of the anthraquinones, and has been shown to have anti-tumor activity in different human cancer cell lines. In the present study, we observed that RHL could cause vacuolar degeneration in HeLa cells, which was not observed in human umbilical vein endothelial cells (HUVECs) and other cell lines (SKOV-3 and SK-BR-3). Therefore, the purpose of this study was to investigate the anti-tumor effect of rhein lysinate on human cervix cancer HeLa cells. The results indicated that RHL could induce HeLa cell S-phase arrest and RHL (higher than 80 μM) also induced HeLa cell G2/M-phase arrest in a dose-dependent manner. Compared to the HeLa cells, RHL induced HUVECs G1-phase arrest at all dose levels tested in a dose-dependent manner. Treatment with RHL led to a significant S or G2/M-phase arrest through promoting the expression of p53 and p21 and the phosphorylation of p53. Moreover, 80 μM RHL could increase 5-FU anti-tumor activity. In conclusion, RHL could be a novel chemotherapeutic drug candidate for the treatment of human cervix cancer in the future.


PLoS ONE ◽  
2013 ◽  
Vol 8 (11) ◽  
pp. e70627 ◽  
Author(s):  
Qing Yang ◽  
Bo Wang ◽  
Wen Zang ◽  
Xuping Wang ◽  
Zhifang Liu ◽  
...  

2018 ◽  
Vol 15 (1) ◽  
pp. 31-36 ◽  
Author(s):  
Xiaofeng Bao ◽  
Ying Xue ◽  
Chao Xia ◽  
Yin Lu ◽  
Ningjing Yang ◽  
...  

Background: Chlamydiae, characterized by a unique biphasic life cycle, are a group of Gram-negative obligate intracellular bacterial pathogens responsible for diseases in a range of hosts including humans. Benzylidene acylhydrazide CF0001 could inhibit chlamydiae independent of iron starvation and T3SS inhibition. This finding promoted us to design and synthesize more benzylidene acylhydrazides to find novel anti-chlamydial agents. Methods: The carboxylic acids 1a-1d were coupled with Boc-hydrazide inpresence of EDCI and DMAP to obtain the intermediate 2a-2d in 60-62% yields. N-Boc deprotections were performed to obtain hydrazide hydrochloride salt 3a-3d. Nextly, the hydrazides were subjected to condensation with aldehydes to obtain benzylidene acylhydrazides 4a-4g in 30-52% yields in two steps. Results: Compound 4d exhibited best inhibitory effect on the formation and growth of chlamydial inclusions. The IC50 value of compound 4d for infectious progenies was 3.55 µM, better than 7.30 µM of CF0001. Conclusion: To find novel anti-chlamydial agents, we have designed and synthesized benzylidene acylhydrazides 4a-4g. Compounds 4a, 4d, 4g showed inhibitory activity on C. muridarum with the IC50 values from 3.55-12 µM. The 3,5-dibromo-4-hydroxyl substitutes on ring B are critical to keep their anti-chlamydial activity. Compound 4d inhibited C. muridarum in a dose-dependent manner without apparent cytotoxicity.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Elham Poonaki ◽  
Fatemeh Ariakia ◽  
Mohammad Jalili-Nik ◽  
Mehdi Shafiee Ardestani ◽  
Gholamhossein Tondro ◽  
...  

AbstractDespite advances in glioblastoma (GBM) treatments, current approaches have failed to improve the overall survival of patients. The oncogene BMI-1, a core member of the polycomb group proteins, is a potential novel therapeutic target for GBM. To enhance the efficacy and reduce the toxicity, PTC209, a BMI-1 inhibitor, was loaded into a PLGA–PEG nanoparticle conjugated with CD133 antibody (Nano-PTC209) and its effect on the behavior of human GBM stem-like cells (GSCs) and the human glioblastoma cell line (U87MG) was assessed. Nano-PTC209 has a diameter of ~ 75 nm with efficient drug loading and controlled release. The IC50 values of Nano-PTC209 for GSCs and U87MG cells were considerably lower than PTC209. Nano-PTC209 significantly decreased the viability of both GSCs and U87MG cells in a dose-dependent manner and caused a significant enhancement of apoptosis and p53 levels as well as inhibition of AKT and JNK signaling pathways. Furthermore, Nano-PTC209 significantly inhibited the migration ability, decreased the activity of metalloproteinase-2 and -9, and increased the generation of reactive oxygen species in both GSCs and U87MG cells. Our data indicate that PLGA–PEG nanoparticle conjugated with CD133 antibody could be an ideal nanocarrier to deliver PTC209 and effectively target BMI-1 for potential approaches in the treatment of GBM.


Sign in / Sign up

Export Citation Format

Share Document