Leveraging phased variants for personalized minimal residual disease detection in localized non-small cell lung cancer.

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 8518-8518
Author(s):  
David Matthew Kurtz ◽  
Jacob J. Chabon ◽  
Brian Sworder ◽  
Lyron Co Ting Keh ◽  
Joanne Soo ◽  
...  

8518 Background: Detection of circulating tumor DNA (ctDNA) has prognostic value in lung cancer and could facilitate minimal residual disease (MRD) driven approaches. However, the sensitivity of ctDNA detection is suboptimal due to the background error rates of existing assays. We developed a novel method leveraging multiple mutations on a single cell-free DNA molecule (“phased variants” or PVs) resulting in an ultra-low error profile. Here we develop and apply this approach to improve MRD in localized NSCLC. Methods: To identify the prevalence of PVs, we reanalyzed whole genome sequencing (WGS) from 2,538 tumors and 24 cancer types from the pan-cancer analysis of whole genomes (PCAWG). We applied Phased Variant Enrichment and Detection Sequencing (PhasED-Seq) to track personalized PVs in localized NSCLC. We compared PhasED-Seq to a single nucleotide variant (SNV)-based ctDNA method. Results: In the PCAWG dataset, we found that PVs were common in both lung squamous cell carcinomas (LUSC, median 1,268/tumor; rank 2nd) and adenocarcinomas (LUAD, median 655.5/tumor; rank 3rd). However, PVs did not occur in stereotyped genomic regions. Thus, to leverage PhasED-Seq, we performed tumor/normal WGS to identify PVs, followed by design of personalized panels targeting PVs to allow deep cfDNA sequencing. We performed personalized PhasED-Seq for 5 patients with localized NSCLC. PVs were identified from WGS of tumor FFPE and validated by targeted resequencing in all cases (median 248/case). The background rate of PVs was lower than that of SNVs, even when considering duplex molecules (background: SNVs, 3.8e-5; duplex SNVs, 1.0e-5; PVs, 1.2e-6; P < 0.0001). We next assessed PhasED-Seq for MRD detection in 14 patient plasma samples. Both SNVs and PhasED-Seq had high specificity in healthy control cfDNA (95% and 97% respectively). Using SNVs, ctDNA was detected in 5/14 samples; PhasED-Seq detected all of these with nearly identical tumor fractions (Spearman rho = 0.97). However, PhasED-Seq also detected MRD in an additional 5 samples containing tumor fractions as low as 0.000094% (median 0.0004%). We analyzed serial samples from a patient with stage III LUAD treated with chemoradiotherapy (CRT) and durvalumab. SNV-based ctDNA and PhasED-Seq detected similar MRD levels (0.8%) prior to therapy. However, 3 samples collected during CRT, as well as before and during immunotherapy, were undetectable by SNVs. SNV-based ctDNA then re-emerged at disease recurrence. PhasED-Seq detected MRD in all 3 samples not detected by SNVs with tumor fractions as low as 0.00016%, including prior to immunotherapy (8 months prior to progression). Similar improvements were seen in samples not detected by SNVs from 2 additional patients. Conclusions: Personalized ctDNA monitoring via PVs is feasible and improves MRD detection in localized NSCLC. PhasED-Seq allows clinical studies testing personalized treatment based on MRD.

2017 ◽  
Vol 12 (1) ◽  
pp. S445
Author(s):  
Aadel Chaudhuri ◽  
Alexander Lovejoy ◽  
Jacob Chabon ◽  
Aaron Newman ◽  
Henning Stehr ◽  
...  

2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 3522-3522 ◽  
Author(s):  
Michael J. Overman ◽  
Jean-Nicolas Vauthey ◽  
Thomas A. Aloia ◽  
Claudius Conrad ◽  
Yun Shin Chun ◽  
...  

3522 Background: Preliminary data suggests that ctDNA can serve as a marker of minimal residual disease following colorectal cancer (CRC) tumor resection. Applicability of current ctDNA testing is limited by the requirement of sequencing known individual tumor mutations. We explored the applicability of a multi-gene panel ctDNA detection technology in CRC. Methods: Plasma was prospectively collected from CRC patients (pts) undergoing hepatic resections with curative intent between 1/2013 to 9/2016. In a blinded manner 5ml of preoperative (preop) and immediate post-operative (postop) plasma were tested using a novel 30kb ctDNA digital sequencing panel (Guardant Health) covering SNVs in 21 genes and indels in 9 genes based on the landscape of genomic alterations in ctDNA from over 10,000 advanced cancer pts with a high theoretical sensitivity (96%) for CRC. Median unique molecule coverage for this study is 9000 for cfDNA inputs ranging from 10 – 150 ng (media input preop = 27 ng, median input postop = 49 ng) with 120,000X sequencing depth on an IIlumina HiSeq2500. Results: A total of 54 pts underwent liver metastectomies with curative intent with a median follow-up of 33 months. Preop blood was a median of 49 days from last systemic chemotherapy and 3 days prior to surgery; postop blood was a median of 17 days after resection. Tumor mutations from standard of care hotspot multigene panel testing (at MDACC) were identified in 46 of 54 pts (85%). Preop ctDNA mutation detection rate was 80% (43/54) and 44% (24/54) in postop setting, with postop median allele frequency of 0.16% (range 0.01% to 20%). In pts with a minimum of 1 year follow up, sensitivity of postop ctDNA for residual disease was 58% (95%CI; 41%-74%), and specificity was 100% (66%-100%). In 43 patients who underwent successful resection of all visible disease, postop detection of ctDNA significantly correlated with RFS (P = 0.002, HR 3.1; 95% CI 1.7-9.1) with 2-year RFS of 0% vs. 47%. Recurrence was detected in ctDNA a median of 5.1 months prior to radiographic recurrence. Conclusions: The detection of postop ctDNA using an NGS panel-based approach is feasible and is associated with a very high rate of disease recurrence.


2017 ◽  
Vol 63 (3) ◽  
pp. 691-699 ◽  
Author(s):  
Francesca Riva ◽  
Francois-Clement Bidard ◽  
Alexandre Houy ◽  
Adrien Saliou ◽  
Jordan Madic ◽  
...  

Abstract BACKGROUND In nonmetastatic triple-negative breast cancer (TNBC) patients, we investigated whether circulating tumor DNA (ctDNA) detection can reflect the tumor response to neoadjuvant chemotherapy (NCT) and detect minimal residual disease after surgery. METHODS Ten milliliters of plasma were collected at 4 time points: before NCT; after 1 cycle; before surgery; after surgery. Customized droplet digital PCR (ddPCR) assays were used to track tumor protein p53 (TP53) mutations previously characterized in tumor tissue by massively parallel sequencing (MPS). RESULTS Forty-six patients with nonmetastatic TNBC were enrolled. TP53 mutations were identified in 40 of them. Customized ddPCR probes were validated for 38 patients, with excellent correlation with MPS (r = 0.99), specificity (≥2 droplets/assay), and sensitivity (at least 0.1%). At baseline, ctDNA was detected in 27/36 patients (75%). Its detection was associated with mitotic index (P = 0.003), tumor grade (P = 0.003), and stage (P = 0.03). During treatment, we observed a drop of ctDNA levels in all patients but 1. No patient had detectable ctDNA after surgery. The patient with rising ctDNA levels experienced tumor progression during NCT. Pathological complete response (16/38 patients) was not correlated with ctDNA detection at any time point. ctDNA positivity after 1 cycle of NCT was correlated with shorter disease-free (P &lt; 0.001) and overall (P = 0.006) survival. CONCLUSIONS Customized ctDNA detection by ddPCR achieved a 75% detection rate at baseline. During NCT, ctDNA levels decreased quickly and minimal residual disease was not detected after surgery. However, a slow decrease of ctDNA level during NCT was strongly associated with shorter survival.


Author(s):  
Bruna Pellini ◽  
Aadel A. Chaudhuri

Circulating tumor DNA (ctDNA) minimal residual disease (MRD) is a powerful biomarker with the potential to improve survival outcomes for non–small-cell lung cancer (NSCLC). Multiple groups have shown the ability to detect MRD following curative-intent NSCLC treatment using next-generation sequencing–based assays of plasma cell-free DNA. These studies have been modest in size, largely retrospective, and without thorough prospective clinical validation. Still, when restricting measurement to the first post-treatment timepoint to assess the clinical performance of ctDNA MRD detection, they have demonstrated sensitivity for predicting disease relapse ranging between 36% and 100%, and specificity ranging between 71% and 100%. When considering all post-treatment follow-up timepoints (surveillance), including those beyond the initial post-treatment measurement, these assays' performances improve with sensitivity and specificity for identifying relapse ranging from 82% to 100% and 70% to 100%, respectively. In this manuscript, we review the evidence available to date regarding ctDNA MRD detection in patients with NSCLC undergoing curative-intent treatment and the ongoing prospective studies involving ctDNA MRD detection in this patient population.


Sign in / Sign up

Export Citation Format

Share Document