The impact of land use and urbanization on drainage system

Author(s):  
A. Stec ◽  
D. Słyś
Keyword(s):  
Land Use ◽  
Proceedings ◽  
2020 ◽  
Vol 30 (1) ◽  
pp. 62
Author(s):  
Zahra Kalantari ◽  
Johanna Sörensen

The densification of urban areas has raised concerns over increased pluvial flooding. Flood risk in urban areas might increase under the impact of land use changes. Urbanisation involves the conversion of natural areas to impermeable areas, causing lower infiltration rates and increased runoff. When high-intensity rainfall exceeds the capacity of an urban drainage system, the runoff causes pluvial flooding in low-laying areas. In the present study, a long time series (i.e., 20 years) of geo-referenced flood claims from property owners has been collected and analysed in detail to assess flood risk as it relates to land use changes in urban areas. The flood claim data come from property owners with flood insurance that covers property loss from overland flooding, groundwater intrusion through basement walls, as well as flooding from drainage systems; these data serve as a proxy of flood severity. The spatial relationships between land use change and flood occurrences in different urban areas were analysed. Special emphasis was placed on examining how nature-based solutions and blue-green infrastructure relate to flood risk. The relationships are defined by a statistical method explaining the tendencies whereby land use change affects flood risk.


2013 ◽  
Vol 44 (2s) ◽  
Author(s):  
Massimo Prosdocimi ◽  
Giulia Sofia ◽  
Giancarlo Dalla Fontana ◽  
Paolo Tarolli

Anthropic pressure has been proven to be one of the most evident forces able to alter landscapes. Its impact on the surroundings can be easily detectable especially in a high-density populated country such as Italy. Among the most evident anthropic alterations, the most important are the urbanization processes but also changes in cultural techniques that have been occurring in rural areas. These modifications influence the hydrologic regimes in two ways: by modifying the direct runoff production and by having a strong impact on the drainage system itself. The main objectives of this work are to evaluate the impact of land cover changes in the Veneto region (north-east Italy) on the minor drainage network system, and to analyze changes in the direct runoff in the last 50 years. The study area is a typical agrarian landscape and it has been chosen considering its involvement in the major flood of 2010 and considering also the availability of data, including historical aerial photographs, historical information, and a high resolution LiDAR DTM. The results underline how land cover variations over the last 50 years have strongly increased the propension of the soil to produce direct runoff (increase of the Curve Number value) and they have also reduced the extent of the minor network system to the detriment of urbanized areas and changes of plots of land boundaries. As a consequence, the capacity of the minor network to attenuate and eventually laminate a flood event is decreased as well. These analysis can be considered useful tools for a suitable land use planning in flood prone areas.


2020 ◽  
Vol 7 (1) ◽  
pp. 91
Author(s):  
Júlio Barboza Chiquetto ◽  
Maria Elisa Siqueira Silva ◽  
Rita Yuri Ynoue ◽  
Flávia Noronha Dutra Ribieiro ◽  
Débora Souza Alvim ◽  
...  

A poluição do ar é influenciada por fatores naturais e antropogênicos. Quatro pontos de monitoramento (veicular, comercial, residencial e background urbano (BGU))da poluição do ar em São Paulo foram avaliados durante 16 anos, revelando diferenças significativas devidoao uso do solo em todas as escalas temporais. Na escala diurna, as concentrações de poluentes primários são duas vezes mais altas nos pontos veicular e residencial do que no ponto BGU, onde a concentração de ozonio (O3) é 50% mais alta. Na escala sazonal, as concentrações de monóxido de carbono(CO) variaram em 80% devido ao uso do solo, e 55% pela sazonalidade.As variações sazonais ede uso do solo exercem impactos similares nas concentrações de O3 e monóxido de nitrogênio (NO). Para o material particulado grosso (MP10) e o dióxido de nitrogênio(NO2), as variações sazonais são mais intensas do que as por uso do solo. Na série temporal de 16 anos, o ponto BGU apresentou correlações mais fortes e significativas entre a média mensal de ondas longas (ROL) e o O3 (0,48) e o MP10 (0,37), comparadas ao ponto veicular (0,33 e 0,22, respectivamente). Estes resultados confirmam que o uso do solo urbano tem um papel significativo na concentração de poluentes em todas as escalas de análise, embora a sua influência se torne menos pronunciada em escalas maiores, conforme a qualidade do ar transita de um sistema antropogênico para um sistema natural. Isto poderá auxiliar decisões sobre políticas públicas em megacidades envolvendo a modificação do uso do solo.


2019 ◽  
Vol 11 (1) ◽  
pp. 108-129
Author(s):  
Andrew G. Mueller ◽  
Daniel J. Trujillo

This study furthers existing research on the link between the built environment and travel behavior, particularly mode choice (auto, transit, biking, walking). While researchers have studied built environment characteristics and their impact on mode choice, none have attempted to measure the impact of zoning on travel behavior. By testing the impact of land use regulation in the form of zoning restrictions on travel behavior, this study expands the literature by incorporating an additional variable that can be changed through public policy action and may help cities promote sustainable real estate development goals. Using a unique, high-resolution travel survey dataset from Denver, Colorado, we develop a multinomial discrete choice model that addresses unobserved travel preferences by incorporating sociodemographic, built environment, and land use restriction variables. The results suggest that zoning can be tailored by cities to encourage reductions in auto usage, furthering sustainability goals in transportation.


2020 ◽  
Vol 12 (3) ◽  
pp. 528 ◽  
Author(s):  
Jingye Li ◽  
Jian Gong ◽  
Jean-Michel Guldmann ◽  
Shicheng Li ◽  
Jie Zhu

Land use/cover change (LUCC) has an important impact on the terrestrial carbon cycle. The spatial distribution of regional carbon reserves can provide the scientific basis for the management of ecosystem carbon storage and the formulation of ecological and environmental policies. This paper proposes a method combining the CA-based FLUS model and the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model to assess the temporal and spatial changes in ecosystem carbon storage due to land-use changes over 1990–2015 in the Qinghai Lake Basin (QLB). Furthermore, future ecosystem carbon storage is simulated and evaluated over 2020–2030 under three scenarios of natural growth (NG), cropland protection (CP), and ecological protection (EP). The long-term spatial variations in carbon storage in the QLB are discussed. The results show that: (1) Carbon storage in the QLB decreased at first (1990–2000) and increased later (2000–2010), with total carbon storage increasing by 1.60 Tg C (Teragram: a unit of mass equal to 1012 g). From 2010 to 2015, carbon storage displayed a downward trend, with a sharp decrease in wetlands and croplands as the main cause; (2) Under the NG scenario, carbon reserves decrease by 0.69 Tg C over 2020–2030. These reserves increase significantly by 6.77 Tg C and 7.54 Tg C under the CP and EP scenarios, respectively, thus promoting the benign development of the regional ecological environment. This study improves our understanding on the impact of land-use change on carbon storage for the QLB in the northeastern Qinghai–Tibetan Plateau (QTP).


2009 ◽  
Vol 24 (4) ◽  
pp. 214-222 ◽  
Author(s):  
Jeffrey D. Kline ◽  
Alissa Moses ◽  
David Azuma ◽  
Andrew Gray

Abstract Forestry professionals are concerned about how forestlands are affected by residential and other development. To address those concerns, researchers must find appropriate data with which to describe and evaluate rates and patterns of forestland development and the impact of development on the management of remaining forestlands. We examine land use data gathered from Landsat imagery for western Washington and evaluate its usefulness for characterizing low-density development of forestland. We evaluate the accuracy of the satellite imagery‐based land use classifications by comparing them with other data from US Forest Service's Forest Inventory and Analysis inventories and the US census. We then use the data to estimate an econometric model describing development as a function of socioeconomic and topographic factors and project future rates of development and forestland loss to 2020. We conclude by discussing how best to meet the land use data needs of researchers, forestry policymakers, and managers.


Land ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 762
Author(s):  
Lei Han ◽  
Rui Chen ◽  
Zhao Liu ◽  
Shanshan Chang ◽  
Yonghua Zhao ◽  
...  

The environment of the urban fringe is complex and frangible. With the acceleration of industrialization and urbanization, the urban fringe has become the primary space for urban expansion, and the intense human activities create a high risk of potentially toxic element (PTE) pollution in the soil. In this study, 138 surface soil samples were collected from a region undergoing rapid urbanization and construction—Weinan, China. Concentrations of As, Pb, Cr, Cu, and Ni (Inductively Coupled Plasma Mass Spectrometry, ICP-MS) and Hg (Atomic Fluorescence Spectrometry, AFS) were measured. The Kriging interpolation method was used to create a visualization of the spatial distribution characteristics and to analyze the pollution sources of PTEs in the soil. The pollution status of PTEs in the soil was evaluated using the national environmental quality standards for soils in different types of land use. The results show that the content range of As fluctuated a small amount and the coefficient of variation is small and mainly comes from natural soil formation. The content of Cr, Cu, and Ni around the automobile repair factory, the prefabrication factory, and the building material factory increased due to the deposition of wear particles in the soil. A total of 13.99% of the land in the study area had Hg pollution, which was mainly distributed on category 1 development land and farmland. Chemical plants were the main pollution sources. The study area should strictly control the industrial pollution emissions, regulate the agricultural production, adjust the land use planning, and reduce the impact of pollution on human beings. Furthermore, we make targeted remediation suggestions for each specific land use type. These results are of theoretical significance, will be of practical value for the control of PTEs in soil, and will provide ecological environmental protection in the urban fringe throughout the urbanization process.


Sign in / Sign up

Export Citation Format

Share Document