scholarly journals Sources of and Control Measures for PTE Pollution in Soil at the Urban Fringe in Weinan, China

Land ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 762
Author(s):  
Lei Han ◽  
Rui Chen ◽  
Zhao Liu ◽  
Shanshan Chang ◽  
Yonghua Zhao ◽  
...  

The environment of the urban fringe is complex and frangible. With the acceleration of industrialization and urbanization, the urban fringe has become the primary space for urban expansion, and the intense human activities create a high risk of potentially toxic element (PTE) pollution in the soil. In this study, 138 surface soil samples were collected from a region undergoing rapid urbanization and construction—Weinan, China. Concentrations of As, Pb, Cr, Cu, and Ni (Inductively Coupled Plasma Mass Spectrometry, ICP-MS) and Hg (Atomic Fluorescence Spectrometry, AFS) were measured. The Kriging interpolation method was used to create a visualization of the spatial distribution characteristics and to analyze the pollution sources of PTEs in the soil. The pollution status of PTEs in the soil was evaluated using the national environmental quality standards for soils in different types of land use. The results show that the content range of As fluctuated a small amount and the coefficient of variation is small and mainly comes from natural soil formation. The content of Cr, Cu, and Ni around the automobile repair factory, the prefabrication factory, and the building material factory increased due to the deposition of wear particles in the soil. A total of 13.99% of the land in the study area had Hg pollution, which was mainly distributed on category 1 development land and farmland. Chemical plants were the main pollution sources. The study area should strictly control the industrial pollution emissions, regulate the agricultural production, adjust the land use planning, and reduce the impact of pollution on human beings. Furthermore, we make targeted remediation suggestions for each specific land use type. These results are of theoretical significance, will be of practical value for the control of PTEs in soil, and will provide ecological environmental protection in the urban fringe throughout the urbanization process.

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Xinli Ke ◽  
Feng Wu ◽  
Caixue Ma

Urban land expansion plays an important role in climate change. It is significant to select a reasonable urban expansion pattern to mitigate the impact of urban land expansion on the regional climate in the rapid urbanization process. In this paper, taking Wuhan metropolitan as the case study area, and three urbanization patterns scenarios are designed to simulate spatial patterns of urban land expansion in the future using the Partitioned and Asynchronous Cellular Automata Model. Then, simulation results of land use are adjusted and inputted into WRF (Weather Research and Forecast) model to simulate regional climate change. The results show that: (1) warming effect is strongest under centralized urbanization while it is on the opposite under decentralized scenario; (2) the warming effect is stronger and wider in centralized urbanization scenario than in decentralized urbanization scenario; (3) the impact trends of urban land use expansion on precipitation are basically the same under different scenarios; (4) and spatial distribution of rainfall was more concentrated under centralized urbanization scenario, and there is a rainfall center of wider scope, greater intensity. Accordingly, it can be concluded that decentralized urbanization is a reasonable urbanization pattern to mitigate climate change in rapid urbanization period.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Pengyan Zhang ◽  
Yanyan Li ◽  
Wenlong Jing ◽  
Dan Yang ◽  
Yu Zhang ◽  
...  

Urbanization is causing profound changes in ecosystem functions at local and regional scales. The net primary productivity (NPP) is an important indicator of global change, rapid urbanization and climate change will have a significant impact on NPP, and urban expansion and climate change in different regions have different impacts on NPP, especially in densely populated areas. However, to date, efforts to quantify urban expansion and climate change have been limited, and the impact of long-term continuous changes in NPP has not been well understood. Based on land use data, night light data, NPP data, climate data, and a series of social and economic data, we performed a comprehensive analysis of land use change in terms of type and intensity and explored the pattern of urban expansion and its relationship with NPP and climate change for the period of 2000–2015, taking Zhengzhou, China, as an example. The results show that the major form of land use change was cropland to built-up land during the 2000–2015 period, with a total area of 367.51 km2 converted. The NPP exhibited a generally increasing trend in the study area except for built-up land and water area. The average correlation coefficients between temperature and NPP and precipitation and NPP were 0.267 and 0.020, respectively, indicating that an increase in temperature and precipitation can promote NPP despite significant spatial differences. During the examined period, most expansion areas exhibited an increasing NPP trend, indicating that the influence of urban expansion on NPP is mainly characterized by an evident influence of the expansion area. The study can provide a reference for Zhengzhou and even the world's practical research to improve land use efficiency, increase agricultural productivity and natural carbon sinks, and maintain low-carbon development.


2020 ◽  
Vol 20 (1) ◽  
pp. 9-18
Author(s):  
Rabina Twayana ◽  
Sijan Bhandari ◽  
Reshma Shrestha

Nepal is considered one of the rapidly urbanizing countries in south Asia. Most of the urbanization is dominated in large and medium cities i.e., metropolitan, sub-metropolitan, and municipalities. Remote Sensing and Geographic Information System (GIS) technologies in the sector of urban land governance are growing day by day due to their capability of mapping, analyzing, detecting changes, etc. The main aim of this paper is to analyze the urban growth pattern in Banepa Municipality during three decades (1992-2020) using freely available Landsat imageries and explore driving factors for change in the urban landscape using the AHP model. The Banepa municipality is taken as a study area as it is one of the growing urban municipalities in the context of Nepal. The supervised image classification was applied to classify the acquired satellite image data. The generated results from this study illustrate that urbanization is gradually increasing from 1992 to 2012 while, majority of the urban expansion happened during 2012-2020, and it is still growing rapidly along the major roads in a concentric pattern. This study also demonstrates the responsible driving factors for continuous urban growth during the study period. Analytical Hierarchy Process (AHP) was adopted to analyze the impact of drivers which reveals that, Internal migration (57%) is major drivers for change in urban dynamics whereas, commercialization (25%), population density (16%), and real estate business (5%) are other respective drivers for alteration of urban land inside the municipality. To prevent rapid urbanization in this municipality, the concerned authorities must take initiative for proper land use planning and its implementation on time. Recently, Nepal Government has endorsed Land Use Act 2019 for preventing the conversion of agricultural land into haphazard urban growth.


2019 ◽  
Vol 11 (1) ◽  
pp. 184 ◽  
Author(s):  
Xinli Ke ◽  
Liye Wang ◽  
Yanchun Ma ◽  
Kunpeng Pu ◽  
Ting Zhou ◽  
...  

Land use and land cover change is a critical factor of ecosystem services, while water yield plays a vital role in sustainable development. The impact of urban expansion on water yield has long been discussed, but water yield change resulting from cropland protection is seldom concerned. Therefore, this paper aims to investigate the impacts of cropland protection on water yield by comparing the water yield in two cropland protection scenarios (i.e., Strict Cropland Protection scenario and No Cropland Protection scenario). Specifically, the LAND System Cellular Automata for Potential Effects (LANDSCAPE) model was employed to simulate land use maps in the two scenarios, while Water Yield module in the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model was used to calculate water yield. The results show water yield would increase by 8.7 × 107 m3 in the No Cropland Protection scenario and 9.4 × 107 m3 in the Strict Cropland Protection scenario. We conclude that implementation of strict cropland protection in rapid urbanizing areas may cause more water yield, which is also a prerequisite of potential urban flooding risk. This study throws that it is not wise to implement strict cropland protection policy in an area of rapid urbanization.


2021 ◽  
Vol 10 (5) ◽  
pp. 272
Author(s):  
Auwalu Faisal Koko ◽  
Wu Yue ◽  
Ghali Abdullahi Abubakar ◽  
Akram Ahmed Noman Alabsi ◽  
Roknisadeh Hamed

Rapid urbanization in cities and urban centers has recently contributed to notable land use/land cover (LULC) changes, affecting both the climate and environment. Therefore, this study seeks to analyze changes in LULC and its spatiotemporal influence on the surface urban heat islands (UHI) in Abuja metropolis, Nigeria. To achieve this, we employed Multi-temporal Landsat data to monitor the study area’s LULC pattern and land surface temperature (LST) over the last 29 years. The study then analyzed the relationship between LULC, LST, and other vital spectral indices comprising NDVI and NDBI using correlation analysis. The results revealed a significant urban expansion with the transformation of 358.3 sq. km of natural surface into built-up areas. It further showed a considerable increase in the mean LST of Abuja metropolis from 30.65 °C in 1990 to 32.69 °C in 2019, with a notable increase of 2.53 °C between 2009 and 2019. The results also indicated an inverse relationship between LST and NDVI and a positive connection between LST and NDBI. This implies that urban expansion and vegetation decrease influences the development of surface UHI through increased LST. Therefore, the study’s findings will significantly help urban-planners and decision-makers implement sustainable land-use strategies and management for the city.


2021 ◽  
Vol 13 (10) ◽  
pp. 5718
Author(s):  
Changqing Sui ◽  
Wei Lu

The urban fringe, as a part of an urban spatial form, plays a considerably major role in urban expansion and shrinking. After decades of rapid development, Chinese cities have advanced from a simple expansion stage to an expansion–shrinking-coexistence stage. In urban shrinking and expansion, the urban fringe shows different characteristics and requirements for specific aspects such as urban planning, land use, urban landscape, ecological protection, and architectural form, thereby forming expanding and shrinking urban fringes. A comprehensive study of expanding and shrinking urban fringes and their patterns is theoretically significant for urban planning, land use, planning management, and ecological civilisation construction.


Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 359
Author(s):  
Zhouqiao Ren ◽  
Jianhua He ◽  
Qiaobing Yue

Landscape connectivity is important for all organisms as it directly affects population dynamics. Yet, rapid urbanization has caused serious landscape fragmentation, which is the primary contributor of species extinctions worldwide. Previous studies have mostly used spatial snap-shots to evaluate the impact of urban expansion on landscape connectivity. However, the interactions among habitats over time in dynamic landscapes have been largely ignored. Here, we demonstrated that overlooking temporal connectivity can lead to the overestimation of the impact of urban expansion. How much greater the overestimation is depends on the amount of net habitat loss. Moreover, we showed that landscape connectivity may have a delayed response to urban expansion. Our analysis shifts the way to understand the ecological consequences of urban expansion. Our framework can guide sustainable urban development and can be inspiring to conservation practices under other contexts (e.g., climate change).


2019 ◽  
Vol 11 (22) ◽  
pp. 6203 ◽  
Author(s):  
Shuhan Liu ◽  
Dongyan Wang ◽  
Guoping Lei ◽  
Hong Li ◽  
Wenbo Li

Ecological land with considerable ecological value can be regarded as an important indicator in guaranteeing ecosystem function and sustainable development. Generally, the urbanization process has been considered to be the primary factor affecting ecological land use. However, the influence of agricultural development, particularly in a typical farming area, has rarely been studied. In this paper, we present a method to assess the ecological risk of ecological land (ELER) in a black soil area in northeastern China. Furthermore, the underlying factors were detected using the geographically weighted regression model, which took into account conditions of natural elements, the urbanization process, and grain production conditions. The results indicate that ecological land experienced remarkable changes with an evident loss and decline from 1996–2015. The ELER progressively increased in the concentrated farming area and the western agro-pastoral ecotone, and the ecological land in the eastern forest area was always at a high risk level. According to the regression coefficients, the relationships between influence factors and ELER could be better explained by the variables of elevation, slope, proportion of rural residential area, and ratio of cultivated land area to residential area. To summarize, agricultural occupation and urban expansion were verified as the two main causes of ecological land loss, as well as elevated risks. In light of the current situation, measures such as policy adjustment and ecological restoration should be taken to avoid risk and optimize land use.


Water Policy ◽  
2016 ◽  
Vol 19 (1) ◽  
pp. 181-195 ◽  
Author(s):  
Huiqing Han ◽  
Yuxiang Dong

Water supply is an important freshwater ecosystem service provided by ecosystems. Water shortages resulting from spatio-temporal heterogeneity of climate condition or human activities present serious problems in the Guizhou Province of southwest China. This study aimed to analyze the spatio-temporal changes of water supply service using the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model, explore how climate and land-use changes impact water supply provision, and discuss the impact of parameters associated with climate and land-use in the InVEST model on water supply in the region. We used data and the model to forecast trends for the year 2030 and found that water supply has been declining in the region at the watershed scale since 1990. Climate and land-use change played important roles in affecting the water supply. Water supply was overwhelmingly driven by the reference evapotranspiration and annual average precipitation, while the plant evapotranspiration coefficients for each land-use type had a relatively small effect. The method for sensitivity analysis developed in this study allowed exploration of the relative importance of parameters in the InVEST water yield model. The Grain-for-Green project, afforestation, and urban expansion control should be accelerated in this region to protect the water supply.


Sign in / Sign up

Export Citation Format

Share Document