Bubble Nucleation in Polymer Mixtures

2017 ◽  
pp. 67-102
Author(s):  
Ali V. Yazdi ◽  
Eric J. Beckman
Author(s):  
Alexander Muranov ◽  
Alexey Semenov ◽  
Anatoly Kutsbakh ◽  
Boris Semenov

The article discusses one of the modern areas of powder metallurgy – the technology of manufacturing shaped parts by the powder injection molding (PIM). For the powder-polymer mixture (feedstock) with a wax-polypropylene binder of the solvent-thermal type of removal by isobaric volume dilatometry, the dependence of PVT state parameters was studied. For each component of the polymer binder, the dependence of pressure on the temperature of phase transition was obtained. As a result of mathematical processing and analysis of PVT data for the feedstock of the studied type, a technological window of parameters has been determined that allows injection molding of «green parts» with minimal volume shrinkage. The results of a comparative analysis of the compaction of feedstock with a polymer binder catalytic and solution-thermal type of removal are presented.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 212
Author(s):  
Ming-Jun Liao ◽  
Li-Qiang Duan

The influence of different wettability on explosive boiling exhibits a significant distinction, where the hydrophobic surface is beneficial for bubble nucleation and the hydrophilic surface enhances the critical heat flux. Therefore, to receive a more suitable surface for the explosive boiling, in this paper a hybrid hydrophobic–hydrophilic nanostructured surface was built by the method of molecular dynamics simulation. The onset temperatures of explosive boiling with various coating thickness, pillar width, and film thicknesses were investigated. The simulation results show that the hybrid nanostructure can decrease the onset temperature compared to the pure hydrophilic surface. It is attributed to the effect of hydrophobic coating, which promotes the formation of bubbles and causes a quicker liquid film break. Furthermore, with the increase of the hydrophobic coating thickness, the onset temperature of explosive boiling decreases. This is because the process of heat transfer between the liquid film and the hybrid nanostructured surface is inevitably enhanced. In addition, the onset temperature of explosive boiling on the hybrid wetting surface decreases with the increase of pillar width and liquid film thickness.


1999 ◽  
Vol 1999 (11) ◽  
pp. 023-023 ◽  
Author(s):  
Alessandro Strumia ◽  
Nikolaos Tetradis

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Djuna Croon ◽  
Oliver Gould ◽  
Philipp Schicho ◽  
Tuomas V. I. Tenkanen ◽  
Graham White

Abstract We critically examine the magnitude of theoretical uncertainties in perturbative calculations of fist-order phase transitions, using the Standard Model effective field theory as our guide. In the usual daisy-resummed approach, we find large uncertainties due to renormalisation scale dependence, which amount to two to three orders-of-magnitude uncertainty in the peak gravitational wave amplitude, relevant to experiments such as LISA. Alternatively, utilising dimensional reduction in a more sophisticated perturbative approach drastically reduces this scale dependence, pushing it to higher orders. Further, this approach resolves other thorny problems with daisy resummation: it is gauge invariant which is explicitly demonstrated for the Standard Model, and avoids an uncontrolled derivative expansion in the bubble nucleation rate.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Kaustubh Agashe ◽  
Peizhi Du ◽  
Majid Ekhterachian ◽  
Soubhik Kumar ◽  
Raman Sundrum

Abstract We study the cosmological transition of 5D warped compactifications, from the high-temperature black-brane phase to the low-temperature Randall-Sundrum I phase. The transition proceeds via percolation of bubbles of IR-brane nucleating from the black-brane horizon. The violent bubble dynamics can be a powerful source of observable stochastic gravitational waves. While bubble nucleation is non-perturbative in 5D gravity, it is amenable to semiclassical treatment in terms of a “bounce” configuration interpolating between the two phases. We demonstrate how such a bounce configuration can be smooth enough to maintain 5D effective field theory control, and how a simple ansatz for it places a rigorous lower-bound on the transition rate in the thin-wall regime, and gives plausible estimates more generally. When applied to the Hierarchy Problem, the minimal Goldberger-Wise stabilization of the warped throat leads to a slow transition with significant supercooling. We demonstrate that a simple generalization of the Goldberger-Wise potential modifies the IR-brane dynamics so that the transition completes more promptly. Supercooling determines the dilution of any (dark) matter abundances generated before the transition, potentially at odds with data, while the prompter transition resolves such tensions. We discuss the impact of the different possibilities on the strength of the gravitational wave signals. Via AdS/CFT duality the warped transition gives a theoretically tractable holographic description of the 4D Composite Higgs (de)confinement transition. Our generalization of the Goldberger-Wise mechanism is dual to, and concretely models, our earlier proposal in which the composite dynamics is governed by separate UV and IR RG fixed points. The smooth 5D bounce configuration we introduce complements the 4D dilaton/radion dominance derivation presented in our earlier work.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2412
Author(s):  
Inés Ferrer ◽  
Ariadna Manresa ◽  
José Alberto Méndez ◽  
Marc Delgado-Aguilar ◽  
Maria Luisa Garcia-Romeu

Ultrasonic molding (USM) is a good candidate for studying the plasticization of polymer mixtures or other composite materials due to either the little amount of material needed for processing, low waste or the needed low pressure and residence time of the mold. Thus, the novelty of this research is the capability of USM technology to process PLA/PCL blends and their corresponding neat materials, encompassing all the production stages, from raw material to the final specimen. The major findings of the work revealed that the thermal properties of the blends were not affected by the USM process, although the crystallinity degree experienced variations, decreasing for PLA and increasing for PCL, which was attributed to the crystallization rate of each polymer, the high process speed, the short cooling time and the small particle size. The employed ultrasonic energy increased the molecular weight with low variations through the specimen. However, the degradation results aligned with the expected trend of these material blends. Moreover, this study also showed the effect pellet shape and dimensions have over the process parameters, as well as the effect of the blend composition. It can be concluded that USM is a technology suitable to successfully process PLA/PCL blends with the correct determination of process parameter windows.


1996 ◽  
Vol 118 (3) ◽  
pp. 702-708 ◽  
Author(s):  
H. K. Park ◽  
X. Zhang ◽  
C. P. Grigoropoulos ◽  
C. C. Poon ◽  
A. C. Tam

The thermodynamics of the rapid vaporization of a liquid on a solid surface heated by an excimer laser pulse is studied experimentally. The transient temperature field is measured by monitoring the photothermal reflectance of an embedded thin film in nanosecond time resolution. The transient reflectivity is calibrated by considering a temperature gradient across the sample based on the static measurements of the thin film optical properties at elevated temperatures. The dynamics of bubble nucleation, growth, and collapse is detected by probing the optical specular reflectance. The metastability behavior of the liquid and the criterion for the onset of liquid–vapor phase transition in nanosecond time scale are obtained quantitatively for the first time.


Sign in / Sign up

Export Citation Format

Share Document