Effect of partial substitution of cement by pulverised fuel ash on the compressive strength material

2015 ◽  
Vol 1115 ◽  
pp. 270-274
Author(s):  
Maisarah Ali ◽  
Siti Asmahani Saad ◽  
Noor Farah Elyani Khairuddin ◽  
Ammar Hamzi Sidek ◽  
Muhammad Faiz Md. Salim

This study reports the findings of an experimental investigation for bamboo fibre (BF) reinforced concrete board. In this research, all specimens were prepared at 0.4 water/binder ratio. There were two series of specimens namely A series and B series. The A group utilizes only ordinary portland cement (OPC) as binder. Meanwhile, series B specimens uses binary binders, which were combination of OPC and pulverized fuel ash (PFA) with PFA to OPC ratio of 0.2. The performance of flat board plates with different percentage of bamboo fiber ranging from 0% to 5% and 20% PFA incorporation of cement weight were tested for bending strength (flexural) and compressive strength in accordance to BS 5669: Part 1 for particleboards. Specimens are cured in water curing tank and tested at 3, 7 and 28 days for compression test. Meanwhile for flexural strength test, the specimens are tested at 28 days. It is found that flexural and compressive strength increases with addition of BF. The optimum compressive and flexural strength at 28 days are recorded with 3% incorporation of BF for both PFA and control samples. Therefore, utilizing natural fibre and waste material for partial substitution of cement content in producing internal wall paneling system could contributes to the economic appeal and promoting sustainable construction approach.


2016 ◽  
Vol 9 (2) ◽  
pp. 120-128
Author(s):  
Haspiadi Haspiadi ◽  
Kurniawaty Kurniawaty

Research of  the utilization solid waste of palm oil fuel ash from boiler as row materials  for manufacturing light concrete brick has been conducted. The main objective of this study is to investigate the potential use solid waste of palm oil fuel ash from palm oil mill boilers as row materials for manufacturing light concrete brick has recently attracted for an alternative environmentally sustainable application. In this study, light concrete brick made with various proportions of palm oil fuel ash from palm oil mill boilers and sand were fabricated and studied under laboratory scales. Percentage of palm oil fuel ash of 0% as a control,  10%, 20%, 30%, 40%, 50%, 60%, replacement  sand, wheras others materials such as Portland cement, lime, gypsum, foaming agent and aluminium with the numbers constant. The quality of light concreate brick   were applied followed by the compressive strength test, density and water absorption capacity. The study discovered that the compressive strength for all composition meet the recommended value to light structural of 6.89 MPa as prescribed in SNI 03-3449-2002. In the same manner density of light concrete brick for all proportion under the maximum density recommended value of 1400 Kg/m3 according to SNI 03-3449-2002. While water absorption capacity of increased by the increasing use of ashes. Therefore, palm oil fuel ash from boiler can be used as raw material for the light concrete brick which is  environmental friendly because using solid waste and also an alternative handling solid waste.ABSTRAKPenelitian pemanfaatan limbah padat abu cangkang dan serat kelapa sawit dari boiler sebagai bahan baku pembuatan bata beton ringan telah dilakukan. Tujuan dari penelitian ini adalah pemanfaatan limbah padat abu boiler berbahan bakar cangkang dan serat sebagai bahan pembuatan bata beton ringan sebagai salah satu alternatif pengelolaan lingkungan yang bekelanjutan. Dalam penelitian ini, bata beton ringan dibuat dengan berbagai komposisi abu boiler dan pasir yang diproduksi dalam  skala laboratorium. Persentase dari abu berturut-turut 0% sebagai kontrol, 10%, 20%, 30%, 40%, 50% dan 60% mensubtitusi pasir, sedangkan bahan lain yaitu semen, kapur, gypsum,  foaming  agent serta aluminium pasta dengan jumlah tetap. Mutu bata beton ringan yang diujikan adalah kuat tekan, bobot jenis dan daya serap air. Hasil penelitian menunjukkan bahwa kuat tekan untuk semua komposisi memenuhi batas minimum yang dipersyaratkan untuk stuktural ringan yaitu 6,89 MPa sesuai SNI 03-3449-2002. Demikian pula bobot jenis dari bata ringan yang dihasilkan masih dibawah dari batas maksimum yang direkomendasikan SNI 03-3449-2002 yaitu maksimal 1400 Kg/m3. Sedangkan daya serap air mengalami kenaikan dengan naiknya jumlah abu yang digunakan . Limbah padat abu boiler berbahan bakar cangkang dan serat sawit dapat dimanfaatkan sebagai bahan baku pembuatan bata beton ringan yang ramah lingkungan dengan memanfaatkan limbah dan menjadi salah satu alternatif pengelolaan limbah. Kata kunci :  Abu cangkang kelapa sawit,  bata beton ringan, bobot jenis,  daya serap air,  limbah,  kuat tekan


2014 ◽  
Vol 70 (5) ◽  
Author(s):  
Jamo Usman Hassan ◽  
Mohamad Zaky Noh ◽  
Zainal Arifin Ahmad

The increasing amount of disposed palm oil fuel ash (POFA) from palm oil industries has recently attracted significant attention for an alternative sustainable application. This paper presents the effects of the addition of a treated POFA on porcelain in terms of bending and compressive strength, as well as weight composition. POFA obtained from a palm oil mill was treated via sieving, grinding and heating at a temperature of 600°C for 90 minutes in order to the remove unburnt carbon and to improve the silica content of the POFA. Pellets made with various proportions of porcelain and POFA were fabricated and sintered at a temperature of 1200°C. The results reveal that the maximum bending strength and the compressive strength occurred at 8 wt% addition of POFA, Porcelain containing POFA has about 7% weight reduction compared with normal porcelain.  


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Reza Hodjati ◽  
Hossein Aslani ◽  
Iman Faridmehr ◽  
A. S. M. Abdul Awal ◽  
Ziba Kazemi

Prepacked aggregate concrete (PAC) is a type of concrete that is placed in two stages where the coarse aggregates are first placed inside the formworks and then the grout is pumped from underneath through a manual pump. Grout properties including density, grout consistency, bleeding, and compressive strength are of great importance in PAC. Such properties could be improved by application of pozzolanic materials like palm oil fuel ash. This paper is aimed at finding the most optimum percentage of POFA replacement by weight of cement. It was concluded that 30% POFA replacement yielded the most optimum results.


Author(s):  
Pranshoo Solanki ◽  
Harsh Chauhan

This experiment was conducted to determine the utility of substituting cement with the recycled glass powder (RGP) in mortar mixtures. A total of 21 mortar mixtures were produced using various RGP (FG) ratios (CG), and fly ash (FA) powders. The mortar mixtures were used to prepare cubes which were tested for 7-and 28-day compressive strength. The substitution of cement with FG and CG in mortar resulted in reduced 7-and 28-day compressive strength values. However, the amount and type of RGP substituted for cement plays a crucial role in the determination of mortar strength. Above contraction in compressive strength was observed at an initial maturity than at the final maturity. Further, replacement of cement with Fly Ash showed increase in compressive strength up to certain content. More research and testing for the optimal percentage and size of waste glass powder that can be used is required in flowable fill.


Author(s):  
Amun Amri ◽  
Gilang Fathurrahman ◽  
Ahmad Ainun Najib ◽  
Ella Awaltanova ◽  
Aman ◽  
...  

2014 ◽  
Vol 3 (2) ◽  
pp. 224 ◽  
Author(s):  
Mohammad Awwad

We analyze results of two experiments that tested effect of adding Silica on the compressive strength of concrete at early stage and after long period. The two experiments evaluated different silica/cement ratios for different mixing periods. Adding Silica to concrete mix produce high early strength material which is highly desirable in airports and highways. More than 90 samples of different silica/cement ratios are tested for compressive strength at 3 and 28 days. Test results showed high early up to 60 MPa. Strength increase is proportional with the increase of silica/cement ratio and mixing time with maximum at ratio of 15/100 and 30 minutes mixing time. A relevance Vector Machine (RVM) model is developed to predict concrete compressive strength using concrete mixture inputs information. RVM model predictions matched experimental data closely. The developed model can be used to predict compressive strength in future periods based on initial information related to cement mixture. Keywords: Relevance Vector Machine, Silicate Percent, Prediction Model, Milling Time, Compressive Strength, Concrete.


2020 ◽  
Vol 54 (21) ◽  
pp. 2965-2983
Author(s):  
Guilherme Cunha Guignone ◽  
Geilma Lima Vieira ◽  
Robson Zulcão ◽  
Maxwell Klein Degen ◽  
Sérgio Hémerson de Moraes Mittri ◽  
...  

The search for the application of alternative materials, that can partially replace cement and increase the service life of concrete structures, is necessary from the environmental and technological point of view. In this context, the partial substitution of cement in concretes by pozzolanic additions can be performed as ternary mixtures, such as the combined incorporation of glass powder and metakaolin, enabling the reduction of cement consumption and the minimisation of the CO2 emissions and the natural resources consumption. Therefore, this research evaluated the incorporation of glass powder and metakaolin in an isolated and combined way, as partial substitutes for cement in concretes. The compressive strength and the chloride penetration resistance were evaluated by means of electrical resistivity, chloride permeability, steady-state chloride migration test and chloride diffusion test, obtaining the diffusivity and chloride contaminated depth by the colorimetric method. The alkali–silica reactivity test was also conducted, because of the alkali content of the waste glass being higher than the standard requirements. It was concluded that the combined use of ground glass powder and metakaolin in concrete allowed the replacement of up to 20% of the cement, promoting microstructural improvements and increasing properties related to durability and compressive strength already available at 28 days. Furthermore, it increased the estimated service life up to five times, working as an alternative for the reduction of cement use and concrete properties' improvement.


Sign in / Sign up

Export Citation Format

Share Document