Enzymatic Reaction Kinetics and Immobilization of Enzymes

2021 ◽  
pp. 69-93
Author(s):  
Debabrata Das ◽  
Soumya Pandit
2020 ◽  
Vol 21 (14) ◽  
pp. 5116
Author(s):  
Marco Mendozza ◽  
Arianna Balestri ◽  
Costanza Montis ◽  
Debora Berti

Lipid liquid crystalline mesophases, resulting from the self-assembly of polymorphic lipids in water, have been widely explored as biocompatible drug delivery systems. In this respect, non-lamellar structures are particularly attractive: they are characterized by complex 3D architectures, with the coexistence of hydrophobic and hydrophilic regions that can conveniently host drugs of different polarities. The fine tunability of the structural parameters is nontrivial, but of paramount relevance, in order to control the diffusive properties of encapsulated active principles and, ultimately, their pharmacokinetics and release. In this work, we investigate the reaction kinetics of p-nitrophenyl phosphate conversion into p-nitrophenol, catalysed by the enzyme Alkaline Phosphatase, upon alternative confinement of the substrate and of the enzyme into liquid crystalline mesophases of phytantriol/H2O containing variable amounts of an additive, sucrose stearate, able to swell the mesophase. A structural investigation through Small-Angle X-ray Scattering, revealed the possibility to finely control the structure/size of the mesophases with the amount of the included additive. A UV–vis spectroscopy study highlighted that the enzymatic reaction kinetics could be controlled by tuning the structural parameters of the mesophase, opening new perspectives for the exploitation of non-lamellar mesophases for confinement and controlled release of therapeutics.


2019 ◽  
pp. 115-171
Author(s):  
Debabrata Das ◽  
Debayan Das

2015 ◽  
Vol 727-728 ◽  
pp. 56-60
Author(s):  
Min Li ◽  
Liu Meng Chen ◽  
Bo Quan Jiang

Collagen, as an important biomedical material, has been widely used in medical industry. Fish waste (scales, skins, bones, fins and swim bladders) is a kind of newly developed alternative collagen raw material.This paper uesd papain as enzyme and local bighead fish scales as raw material to extract collagen. More attention was paid to the study on enzymatic reaction kinetics of papain-extracted collagen. The results showed that two kinds of kinetic models(Michaelis-Menten equations and exponential type dynamic equations) at 20, 25 and 28°C were established, respectively and experimentally proved to be basically in agreement with the actual values. These models have a great significance to predict, adjust and control the reaction rate and production output under different conditions.


2019 ◽  
Vol 4 (1) ◽  
pp. 231-235 ◽  
Author(s):  
Fengying Guan ◽  
Jun Zhang ◽  
Heming Tang ◽  
Liping Chen ◽  
Xinjian Feng

Gaseous reactants play a key role in a wide range of biocatalytic reactions, however reaction kinetics are generally limited by the slow mass transport of gases (typically oxygen) in or through aqueous solutions. Herein we address this limitation by developing a triphase reaction system.


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1082
Author(s):  
Sherly Rusli ◽  
Janna Grabowski ◽  
Anja Drews ◽  
Matthias Kraume

The enzymatic hydrolysis of triglycerides with lipases (EC 3.1.1.3.) involves substrates from both water and oil phases, with the enzyme molecules adsorbed at the water-oil (w/o) interface. The reaction rate depends on lipase concentration at the interface and the available interfacial area in the emulsion. In emulsions with large drops, the reaction rate is limited by the surface area. This effect must be taken into account while modelling the reaction. However, determination of the interfacial saturation is not a trivial matter, as enzyme molecules have the tendency to unfold on the interface, and form multi-layer, rendering many enzyme molecules unavailable for the reaction. A multi-scale approach is needed to determine the saturation concentration with specific interfacial area so that it can be extrapolated to droplet swarms. This work explicitly highlights the correlation between interfacial adsorption and reaction kinetics, by integration of the adsorption kinetics into the enzymatic reaction. The rate constants were fitted globally against data from both single droplet and drop swarm experiments. The amount of adsorbed enzymes on the interface was measured in a single drop with a certain surface area, and the enzyme interfacial loading was estimated by Langmuir adsorption isotherm.


2016 ◽  
Vol 110 (3) ◽  
pp. 247a
Author(s):  
Irep Gözen ◽  
Viva Horowitz ◽  
Zachary Chambers ◽  
Vinothan N. Manoharan

FEBS Journal ◽  
2013 ◽  
Vol 281 (2) ◽  
pp. 572-582 ◽  
Author(s):  
Ulrike Wittig ◽  
Maja Rey ◽  
Renate Kania ◽  
Meik Bittkowski ◽  
Lei Shi ◽  
...  

2001 ◽  
Vol 441 (1) ◽  
pp. 15-21 ◽  
Author(s):  
X. Cahours ◽  
C. Viron ◽  
Ph. Morin ◽  
I. Renimel ◽  
P. André ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document