Enzymatic Reaction Kinetics of Papain-Extracted Collagen from Bighead Carp Scales

2015 ◽  
Vol 727-728 ◽  
pp. 56-60
Author(s):  
Min Li ◽  
Liu Meng Chen ◽  
Bo Quan Jiang

Collagen, as an important biomedical material, has been widely used in medical industry. Fish waste (scales, skins, bones, fins and swim bladders) is a kind of newly developed alternative collagen raw material.This paper uesd papain as enzyme and local bighead fish scales as raw material to extract collagen. More attention was paid to the study on enzymatic reaction kinetics of papain-extracted collagen. The results showed that two kinds of kinetic models(Michaelis-Menten equations and exponential type dynamic equations) at 20, 25 and 28°C were established, respectively and experimentally proved to be basically in agreement with the actual values. These models have a great significance to predict, adjust and control the reaction rate and production output under different conditions.

2020 ◽  
Vol 21 (14) ◽  
pp. 5116
Author(s):  
Marco Mendozza ◽  
Arianna Balestri ◽  
Costanza Montis ◽  
Debora Berti

Lipid liquid crystalline mesophases, resulting from the self-assembly of polymorphic lipids in water, have been widely explored as biocompatible drug delivery systems. In this respect, non-lamellar structures are particularly attractive: they are characterized by complex 3D architectures, with the coexistence of hydrophobic and hydrophilic regions that can conveniently host drugs of different polarities. The fine tunability of the structural parameters is nontrivial, but of paramount relevance, in order to control the diffusive properties of encapsulated active principles and, ultimately, their pharmacokinetics and release. In this work, we investigate the reaction kinetics of p-nitrophenyl phosphate conversion into p-nitrophenol, catalysed by the enzyme Alkaline Phosphatase, upon alternative confinement of the substrate and of the enzyme into liquid crystalline mesophases of phytantriol/H2O containing variable amounts of an additive, sucrose stearate, able to swell the mesophase. A structural investigation through Small-Angle X-ray Scattering, revealed the possibility to finely control the structure/size of the mesophases with the amount of the included additive. A UV–vis spectroscopy study highlighted that the enzymatic reaction kinetics could be controlled by tuning the structural parameters of the mesophase, opening new perspectives for the exploitation of non-lamellar mesophases for confinement and controlled release of therapeutics.


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1082
Author(s):  
Sherly Rusli ◽  
Janna Grabowski ◽  
Anja Drews ◽  
Matthias Kraume

The enzymatic hydrolysis of triglycerides with lipases (EC 3.1.1.3.) involves substrates from both water and oil phases, with the enzyme molecules adsorbed at the water-oil (w/o) interface. The reaction rate depends on lipase concentration at the interface and the available interfacial area in the emulsion. In emulsions with large drops, the reaction rate is limited by the surface area. This effect must be taken into account while modelling the reaction. However, determination of the interfacial saturation is not a trivial matter, as enzyme molecules have the tendency to unfold on the interface, and form multi-layer, rendering many enzyme molecules unavailable for the reaction. A multi-scale approach is needed to determine the saturation concentration with specific interfacial area so that it can be extrapolated to droplet swarms. This work explicitly highlights the correlation between interfacial adsorption and reaction kinetics, by integration of the adsorption kinetics into the enzymatic reaction. The rate constants were fitted globally against data from both single droplet and drop swarm experiments. The amount of adsorbed enzymes on the interface was measured in a single drop with a certain surface area, and the enzyme interfacial loading was estimated by Langmuir adsorption isotherm.


2013 ◽  
Vol 80 (3) ◽  
pp. 374-381 ◽  
Author(s):  
Marina Golowczyc ◽  
Carlos Vera ◽  
Mauricio Santos ◽  
Cecilia Guerrero ◽  
Paula Carasi ◽  
...  

Galacto-oligosaccharides (GOS) are prebiotics that have a beneficial effect on human health by promoting the growth of probiotic bacteria in the gut. GOS are commonly produced from lactose in an enzymatic reaction catalysed by β-galactosidase, named transglycosylation. Lactose is the main constituent of whey permeate (WP), normally wasted output from the cheese industry. Therefore, the main goal of this work was to optimise the synthesis of GOS in WP using β-galatosidase from Aspergillus oryzaea. WP and whey permeate enzymatically treated (WP-GOS) were used as culture media of Lactobacillus plantarum 299v. Lb. plantarum 299v attained the stationary phase in approximately 16 h, reaching 3·6 and 4·1×108 CFU/ml in WP and WP-GOS, respectively. The in situ synthesised GOS were not consumed during growth. No significant differences were observed in the growth kinetics of microorganisms in both media. After fermentation, microorganisms were dehydrated by freeze-drying and spray-drying and stored. The recovery of microorganisms after fermentation, dehydration and storage at 4 °C for at least 120 d was above 108 CFU/g. These studies demonstrated that WP is an appropriate substrate for the synthesis of GOS and the obtained product is also adequate as culture medium of Lb. plantarum 299v. The coexistence of GOS and dehydrated viable probiotic microorganisms, prepared using an effluent as raw material, represents the main achievement of this work, with potential impact in the development of functional foods.


2019 ◽  
Vol 63 (3) ◽  
pp. 100-104
Author(s):  
T. Chmela ◽  
P. Krupička

Abstract The oxidation kinetics of depleted uranium and its low-alloy molybdenum alloys (U-2wt.%Mo, U-5wt.%Mo) were measured in a moist air (75% relative humidity) at 60 and 75 ° C. Coefficients of reaction rate equations were determined for linear oxidation kinetics. In the oxidation of depleted uranium at 75 ° C, a change in reaction kinetics from linear to exponential behaviour was observed after about 2500 hours.


1993 ◽  
Vol 58 (2) ◽  
pp. 320-327
Author(s):  
Ivan Dědek

The stirring system of classical turbine agitator beside the anchor agitation system was studied from the point of view of the effect of their hydrodynamic properties on the kinetics of sunflower oil hydrogenation, It was found out that the anchor agitator makes up a higher gas hold-up than the turbine one and its efficiency from the view of reaction kinetics is higher. On changing the geometrical parameters of anchor agitator - by reducing its blade height - its hydrodynamic properties change considerably, and its efficiency decreases. The scaling-up of the stirring system did not manifest itself in the reaction rate in case of the turbine agitator. With the anchor agitator, the scaling-up resulted in the confirmation of its specific effect on the reaction kinetics, viz., on exceeding the limiting value of stirring frequency, the dramatic loss in efficiency took place.


2018 ◽  
Vol 282 ◽  
pp. 182-189
Author(s):  
Guy Vereecke ◽  
Haroen Debruyn ◽  
Quinten de Keyser ◽  
Rita Vos ◽  
Abhishek Dutta ◽  
...  

In semiconductor manufacturing of 3-D nano-structures, modified kinetics have been encountered for the aqueous chemical etching of thin films in nano-confined spaces. A popular explanation relies on changes in reactant concentration from the overlap of electrostatic double layers (EDL) on opposite walls of the nano-structures. In this study, the cycloaddition of dibenzylcyclooctyne-PEG3-alcohol (DBCO) to a linear azide-terminated SAM was performed in nanochannels of width varying from 62 to 32 nm. ATR-FTIR was used to monitor the reaction kinetics, characterize water structuring and determine the pH in nanochannels. Reaction kinetics were slower in nanochannels as compared to a planar surface, while pH shifts were observed in absence of EDL overlap, with a significant influence of channel width. Actually only the overall decrease in reaction rate could be explained by EDL overlap. The discussion shows that the water structuring measured in nanochannels may play a significant role in the observed phenomena.


Soft Matter ◽  
2019 ◽  
Vol 15 (25) ◽  
pp. 5109-5115 ◽  
Author(s):  
Yuichi Masubuchi ◽  
Takashi Uneyama

The retardation in the apparent reaction rate in the network formation of polymers is a long-standing problem. We have tackled this issue by a coarse-grained model to clarify the effect of entanglement between polymers.


2019 ◽  
Vol 814 ◽  
pp. 481-486
Author(s):  
Jin Ge Tong ◽  
Jian Yun He ◽  
Peng Cheng Xie ◽  
Jing Hui Zhang ◽  
Zeng Qiang Shen ◽  
...  

Microfluidic chip injection photocuring is a new method for microfluidic chip fabrication. The accuracy of microfluidic chip photocuring has an important impact on the reliability of microfluidic chip. The reaction rate of photocuring system directly affects the final quality and efficiency of microfluidic chip. The rapid reaction rate of photocuring system will lead to poor feeding effect of the reaction system. The forming accuracy is affected, and the reaction rate is too slow, which will increase the forming time and affect the forming efficiency. In this paper, the conversion rate and reaction rate of different active monomers and oligomers used in the formulation system of microfluidic chips were measured on-line. The photocuring reaction kinetics of microfluidic chips was studied, and the influence of the formulation system on the photocuring reaction was explored, which laid a foundation for optimizing the formulation of microfluidic chips.


Sign in / Sign up

Export Citation Format

Share Document