Impact of Climate Change on Agroecosystems and Mitigation Strategies

Author(s):  
Abhishek Raj ◽  
Manoj Kumar Jhariya ◽  
Dhiraj Kumar Yadav ◽  
Arnab Banerjee
Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 619
Author(s):  
Sadeeka Layomi Jayasinghe ◽  
Lalit Kumar

Even though climate change is having an increasing impact on tea plants, systematic reviews on the impact of climate change on the tea system are scarce. This review was undertaken to assess and synthesize the knowledge around the impacts of current and future climate on yield, quality, and climate suitability for tea; the historical roots and the most influential papers on the aforementioned topics; and the key adaptation and mitigation strategies that are practiced in tea fields. Our findings show that a large number of studies have focused on the impact of climate change on tea quality, followed by tea yield, while a smaller number of studies have concentrated on climate suitability. Three pronounced reference peaks found in Reference Publication Year Spectroscopy (RYPS) represent the most significant papers associated with the yield, quality, and climate suitability for tea. Tea yield increases with elevated CO2 levels, but this increment could be substantially affected by an increasing temperature. Other climatic factors are uneven rainfall, extreme weather events, and climate-driven abiotic stressors. An altered climate presents both advantages and disadvantages for tea quality due to the uncertainty of the concentrations of biochemicals in tea leaves. Climate change creates losses, gains, and shifts of climate suitability for tea habitats. Further studies are required in order to fill the knowledge gaps identified through the present review, such as an investigation of the interaction between the tea plant and multiple environmental factors that mimic real-world conditions and then studies on its impact on the tea system, as well as the design of ensemble modeling approaches to predict climate suitability for tea. Finally, we outline multifaceted and evidence-based adaptive and mitigation strategies that can be implemented in tea fields to alleviate the undesirable impacts of climate change.


2019 ◽  
Vol 26 (2) ◽  
pp. 75-80
Author(s):  
Kuldeep Singh Dogra ◽  
◽  
Sushmita Uniyal ◽  
Kumar Ambrish ◽  
◽  
...  

Indian Western Himalaya has a rich plant diversity/ bio-resources due to the large variations in the altitude (300 to 6000 ms) and climatic conditions from tropical, temperate to alpine. The paper sheds light on the issues and challenges of climate change in the Western Himalaya; its impact on the plant diversity (wild plants, crops, fruits); loss of plant diversity and livelihood of the local communities; impact on the phenology of plant species; possible mitigation strategies to combat the impact of climate change. The Western Himalayan region has a rich diversity of plant diversity or bio resources. These bio resources (wild plants, crops, fruits) have been used by the local communities in the form of traditional medicines and foods from pre-historic periods or since the settlement of human communities in this region. These communities used these bio-resources as a source of income by their cultivation and selling in the markets. They are also involved in the traditional agriculture and horticulture practices and for that dependent on the climatic conditions (rate of precipitation, temperature, humidity) throughout the year. Hence stable environment conditions a pre requisite for better production and productivity. But in the last 100 years an increased in the temperature on earth brought large variation in the climate of Himalayan region too. The extreme climatic conditions will make Himalayan ecosystem more fragile, less productive and more prone towards disasters or natural calamities. Long term planning is required to understand the impact of climate change in the Western Himalaya along with some new strategies to mitigate its impact.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6188
Author(s):  
Marta Videras Rodríguez ◽  
Antonio Sánchez Cordero ◽  
Sergio Gómez Melgar ◽  
José Manuel Andújar Márquez

The growing concern about global climate change extends to different professional sectors. In the building industry, the energy consumption of buildings becomes a factor susceptible to change due to the direct relationship between the outside temperature and the energy needed to cool and heat the internal space. This document aims to estimate the energy consumption of a Minimum Energy Building (MEB) in different scenarios—past, present, and future—in the subtropical climate typical of seaside cities in Southern Spain. The building energy consumption has been predicted using dynamic building energy simulation software tools. Projected climate data were obtained in four time periods (Historical, the 2020s, 2050s, and 2080s), based on four emission scenarios defined by the Intergovernmental Panel on Climate Change (IPCC): B1, B2, A2, A1F1. This methodology has been mathematically complemented to obtain data in closer time frames (2025 and 2030). In addition, different mitigation strategies have been proposed to counteract the impact of climate change in the distant future. The different energy simulations carried on show clearly future trends of growth in total building energy consumption and how current building designers could be underestimating the problem of air conditioning needs in the subtropical zone. Electricity demand for heating is expected to decrease almost completely, while electricity demand for cooling increases considerably. The changes predicted are significant in all scenarios and periods, concluding an increase of between 28–51% in total primary energy consumption during the building life cycle. The proposed mitigation strategies show improvements in energy demands in a range of 11–14% and they could be considered in the initial stages of project design or incorporated in the future as the impact of climate change becomes more pronounced.


Climate change is a result of the global increase in average air and ocean temperatures, and rising average sea levels. Livestock production and health are significantly vulnerable to the impact of climate change. Climate change has direct and indirect impacts on emerging and re-emerging animal diseases and zoonoses since it disrupts natural ecosystems and allows disease-causing pathogens to move into new areas where they may harm wildlife and domestic species, as well as humans. Climate change affects diseases and pest distributions, range prevalence, incidence, and seasonality but the degree of change remains highly uncertain. The occurrence and distribution of vector-borne diseases such as bluetongue, west Nile fever, rift valley fever, African horse sickness, etc. are closely associated with weather patterns and long-term climatic factors strongly influence the incidence of outbreaks. The interaction between animal production and climate change is complex and multi-directional since animal production contributes to climate change; but to the reverse and worse condition, climate change highly affects animal production. Climate change, animal production systems, and animal diseases are strongly linked to each other. But what is worse is that both change in climate and the production systems of animals highly affect the occurrence, distribution, emergence, and re-emergence of animal diseases. The close linkage among climate change, animal production, and disease; the increased threat of climate on the animal production and health sectors needs: the hands of stakeholders in the environment, animal production and health to work in an integrated and systematic manner; researches with emphasis given to the state of climate change and the direct and indirect effects it poses on animal production and health; and ensuring development of sustainable animal farming and land use, and climate adaptation and mitigation strategies.


2021 ◽  
Vol 2 (2) ◽  
pp. 71-77
Author(s):  
Hafiz Ali Raza ◽  
Rana Muhammad Amir ◽  
Farzana Zaheer Syed ◽  
Muhammad Shoaib Ajnum ◽  
Imran Kareem ◽  
...  

Sugarcane is an important cash crop in Pakistan. Recently, the average per hectare production of sugarcane is low due to climatic variation. Therefore, sugarcane farmers are threatened by this emerging issue that has drastically affected their livelihoods, food security, and sustainability. This study was designed to analyze the perception, comprehension, and adoption of cultural practices in the mitigation of the impact of climate change. For this purpose, district Rahim yar khan was selected purposively from the Province of Punjab as the universe of the study; as one of the highly cultivated areas among all districts of Punjab. From selected districts, two tehsils were randomly selected, namely Sadiqabad and Kanpur. From each selected tehsil, 5 villages were selected using randomized sampling technique. In each selected village, 18 sugarcane farmers were selected randomly thus, making a total of 180 respondents. The data were collected through quantitative methods. A pre-tested and well-structured interview schedule was developed for the collection of information from sugarcane farmers.  Data were analyzed using both descriptive and inferential statistics through the Statistical Package for Social Sciences. Results indicated that there was a significant difference between the two groups, adopter and non-adopters of mitigation strategies towards climate change. The results revealed that the majority (98.3 % and 75 %) of the growers reported that an increase in temperature and deforestation for the last five years respectively. Moreover, residues burring and deforestation were major causes of climate change followed by an excess of CO2 from agriculture activities and farm operations. The study recommended that the adoption of cultural practices in mitigation of the impact of climate change should be promoted through information sources.


Sign in / Sign up

Export Citation Format

Share Document